中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 5144-5162.doi: 10.3864/j.issn.0578-1752.2021.23.018
• 畜牧·兽医·资源昆虫 • 上一篇
收稿日期:
2020-10-22
接受日期:
2021-01-06
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
汪露
作者简介:
陈朝喜,Tel:13980060375;E-mail: 基金资助:
CHEN ChaoXi(),LI YuHan,TAN Min,WANG Lu(
),HUANG ZhiHong
Received:
2020-10-22
Accepted:
2021-01-06
Online:
2021-12-01
Published:
2021-12-06
Contact:
Lu WANG
摘要:
【目的】对329株采自川西北高原牦牛和藏猪源大肠杆菌进行生物被膜形成能力、抗生素耐药基因、整合酶基因、毒力基因和遗传谱系分型分析,以期了解其耐药现状、毒力特性和优势遗传谱系分布等生物学特征。【方法】利用麦康凯培养基和15e肠杆菌科细菌生化编码鉴定管对牦牛和藏猪粪便和胃肠道内容物样本进行大肠杆菌分离和鉴定;采用改良结晶紫半定量染色法和微量肉汤稀释法分别对分离菌株进行生物被膜形成能力鉴定及其对24种抗菌药物的敏感性试验;采用普通PCR或多重PCR方法对28个耐药基因、2个整合酶基因、15个毒力基因进行检测和遗传谱系分型分析。【结果】(1)从471份牦牛、藏猪粪便和胃肠道内容物样本分离鉴定329株大肠杆菌,分离率为78.9%。(2)329株大肠杆菌大多表现出弱或无生物被膜形成能力,仅2株为强成膜能力表型(其中牦牛和藏猪源各1株)。(3)329株大肠杆菌对24种抗菌药物多表现出一定的耐药性并呈现多重耐药现象,其中对磺胺甲口恶唑、磺胺二甲嘧啶、链霉素、氯霉素、氨苄西林、利福平和土霉素耐药率较高,对氨基糖苷类(卡那霉素、阿米卡星和壮观霉素)、β-内酰胺类(头孢噻呋、头孢曲松、头孢唑啉)、喹诺酮类(萘啶酸、沙拉沙星、恩诺沙星、环丙沙星、达氟沙星、左氧氟沙星)和多黏菌素B 等敏感。(4)除cat1、cat2、blaCMY-2、blaSHV、tetC、tetG、tetX等7个耐药基因外,其他21个耐药基因检测结果均为阳性,其中以aac(6')-Ib最为流行,其次是sul1和floR,检出率均在30%以上。藏猪源大肠杆菌对喹诺酮类抗生素耐药与qnrA相关,牦牛源大肠杆菌对β-内酰胺类耐药性与blaTEM和blaDHA相关。(5)整合酶基因intⅠ1和intⅠ2的检出率分别为30.09%(99/329)和4.56%(15/329),其中10株大肠杆菌(牦牛源2株,藏猪源8株)同时检测到intⅠ1和intⅠ2。(6)毒力基因agn43、sitA、ompT、eaeA、bcsA、fimC、LT、fyuA和irp2均有阳性检出,但stx1、stx2、ehxA、bcsB、hlyA和hlyE未检测到; 329株大肠杆菌共存在38种不同的毒力谱型,其中285株至少携带除agn43和bcsA外7个毒力基因中的1个,最多携带6个毒力基因。(7)21个耐药基因中,A型和B1型分布的耐药基因种类较B2型和D型丰富;A型中sul3、qnrS、tetM耐药基因分布最广,B1型中sul1和aac(6')-Ib分布最广,不存在tetM和qnrA;7个毒力基因主要分布于A型和B1型,fimC、sitA和ompT主要分布于A型和B1型,eaeA、fyuA和irp2的主要分布于B1型,LT主要分布于A型(仅1株分布于D型)。【结论】329株大肠杆菌耐药较为严重,且耐药基因谱型和毒力谱型呈现多样化,本研究能够为川西北高原牦牛和藏猪源大肠杆菌病治疗、发病机制探讨及抗菌药物合理使用提供数据支持和理论依据。
陈朝喜,李宇涵,谭敏,汪露,黄志宏. 川西北高原牦牛和藏猪源大肠杆菌生物被膜表型、耐药基因、整合酶基因和毒力基因检测[J]. 中国农业科学, 2021, 54(23): 5144-5162.
CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau[J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
表1
耐药基因和整合酶基因扩增引物信息"
抗菌药物类别 Classes of antibacterial agents | 基因名称 Gene name | 引物序列(5′→3′) Primer sequence (5′→3′) | 扩增片段大小 Amplification size (bp) | 退火温度 Annealing temperature (℃) | 参考文献或序列号 Reference or sequence number |
---|---|---|---|---|---|
四环素类 Tetracyclines | tetA | F-CACTATGGCATTCTGCTGGC | 948 | 60 | [ |
R-CATAGATCGCCGTGAAGAGG | |||||
tetB | F-GCCCAGTGCTGTTGTTGTC | 553 | 60 | [ | |
R-AAGACCAAGACCCGCTAATG | |||||
tetC | F-TCCTGCTCGCTTCGCTACT | 730 | 58 | [ | |
R-TGGTCGTCATCTACCTGC | |||||
tetD | F-AAACCATTACGGCATTCTGC | 787 | 56 | [ | |
R-GACCGGATACACCATCCATC | |||||
tetG | F-CGGTCTTATGGGTGCTCTA | 721 | 58 | [ | |
R-CCTTGCTTGTTACTGAC | |||||
tetM | F-TTATCAACGGTTTATCAGG | 397 | 55 | [ | |
R-CGTATATATGCAAGACG | |||||
tetX | F-CAATAATTGGTGGTGGACCC | 468 | 56 | [ | |
R-TTCTTACCTTGGACATCCCG | |||||
磺胺类 Sulfonamides | sul1 | F-TCAGACGTCGTGGATGTCG | 393 | 57 | [ |
R-CGAAGAACCGCACAATCTCG | |||||
sul2 | F-CCTGTTTCGTCCGACACAGA | 435 | 59 | [ | |
R-GAAGCGCAGCCGCAATTCAT | |||||
sul3 | F-AGATGTGATTGATTTGGGAGC | 443 | 53 | [ | |
R-TAGTTGTTTCTGGATTAGAGCCT | |||||
喹诺酮类 Quinolones | qnrA | F-TCAGCAAGAGGATTTCTCA | 627 | 55 | [ |
R-GGCAGCACTATTACTCCCA | |||||
qnrB | F-ACGATGCCTGGTAGTTGTCC | 469 | 55 | [ | |
R-ACGACATTCGTCAACTGCAA | |||||
抗菌药物类别 Classes of antibacterial agents | 基因名称 Gene name | 引物序列(5′→3′) Primer sequence (5′→3′) | 扩增片段大小 Amplification size (bp) | 退火温度 Annealing temperature (℃) | 参考文献或序列号 Reference or sequence number |
qnrS | F-ACGACATTCGTCAACTGCAA | 417 | 55 | [ | |
R-TAAATTGGCACCCTGTAGGC | |||||
qepA | F-GCAGGTCCAGCAGCGGGTAG | 299 | 56 | [ | |
R-CTTCCTGCC CGAGTATCGTG | |||||
β-内酰胺类 β-lactams | blaDHA | F-AACTTTCACAGGTGTGCTGGGT | 387 | 59 | [ |
R-CCGTACGCATACTGGCTTTGC | |||||
blaTEM | F-ATAAAATTCTTGAAGACGAAA | 1080 | 52 | [ | |
R-GACAGTTACCAATGCTTAATC | |||||
blaCMY-2 | F-ATGATGAAAAAATCGTTATGC | 1143 | 57 | [ | |
R-TTGCAGCTTTTCAAGAATGCG | |||||
blaSHV | F-CACTCAAGGATGTATTGTG | 885 | 53 | [ | |
R-TTAGCGTTGCCAGTGCTCG | |||||
酰氨醇类 Amphenicols | floR | F-CTGAGGGTGTCGTCATCTAC | 673 | 54 | [ |
R-GCTCCGACAATGCTGACTAT | |||||
cmlA | F-CGCCACGGTGTTGTTGTTAT | 394 | 59 | [ | |
R-GCGACCTGCGTAAATGTCAC | |||||
cmlB | F-ACTCGGCATGGACATGTACT | 284 | 57 | [ | |
R-ACGGACTGCGGAATCCATAG | |||||
氨基糖苷类 Aminoglycosides | cat1 | F-CTTGTCGCCTTGCGTATAAT | 508 | 53 | [ |
R-ATCCCAATGGCATCGTAAAG | |||||
cat2 | F-AACGGCATGATGAACCTGAA | 547 | 53 | [ | |
R-ATCCCAATGGCATCGTAAAG | |||||
aac(3’)-Ⅳ | F-GGCCACTTGGACTGATCGAG | 409 | 58 | X01385 | |
R-GCGGATGCAGGAAGATCAAC | |||||
aadA2 | F-GGTGCTAAGCGTCATTGAGC | 470 | 57 | AB154408 | |
R-GCTTCAAGGTTTCCCTCAGC | |||||
rmtB | F-ACATCAACGATGCCCTCAC | 472 | 53 | AB103506 | |
R-AAGTTCTGTTCCGATGGTC | |||||
aac(6’)-Ib | F-TTGCGATGCTCTATGAGTGGCTA | 482 | 56 | [ | |
R-CTCGAATGCCTGGCGTGTTT | |||||
aph (3’)-Ⅶ | F-TCCACAGGATGGCAAGATCC | 690 | 55 | AY260546 | |
R-TTCAACGGGAAACGTCTTGC | |||||
整合酶基因 Integrase genes | intⅠ1 | F-CCTCCCGCACGATGATC | 280 | 57 | [ |
R-TCCACGCATCGTCAGGC | |||||
intⅠ2 | F-TTATTGCTGGGATTAGGC | 233 | 52 | [ | |
R-ACGGCTACCCTCTGTTATC |
表2
毒力基因扩增引物信息"
毒力基因类别 Types of virluence genes | 基因名称 Gene name | 引物序列(5′→3′) Primer sequence(5′→3′) | 扩增片段大小 Amplification size(bp) | 退火温度 Annealing temperature (℃) | 参考文献或序列号 Reference or sequence number |
---|---|---|---|---|---|
产志贺毒素毒力基因 Shiga toxin-producing virulence gene | stx1 | F-ACACTGGATGATCTCAGTGG | 614 | 58 | [ |
R-CTGAATCCCCCTCCATTATG | |||||
stx2 | F-CCTGTCAACTGAGCACTTTG | 779 | 58 | [ | |
R-CCATGACAACGGACAGCAGTT | |||||
非菌毛黏附素 Non-fimbrial adhesin | eaeA | F-ATGCTTAGTGCTGGTTTAGG | 248 | 55 | EF079676 |
R-GCCTTCATCATTTCGCTTTC | |||||
EHEC溶血素 EHEC hemolysin | ehxA | F-CAATAATTGGTGGTGGACCC | 583 | 55 | EF088504 |
R-TTCTTACCTTGGACATCCCG | |||||
相变抗原 Phase variation antigen | agn43 | F-GACTATGACCGGATTSTGGCAGGCT | 499 | 67 | [ |
R-GTGGCTCCAGCATCARTTGTCAG | |||||
铁结合蛋白 Iron transport periplasmic-binding protein | sitA | F-AGGGGGCACAACTGATTCTCG | 608 | 57 | [ |
R-TACCGGGCCGTTTTCTGTGC | |||||
溶血素 Hemolysin | hlyF | F-GGCGATTTAGGCATTCCGATACTC | 599 | 55 | [ |
R-ACGGGGTCGCTAGTTAAGGAG | |||||
hlyA | F-AACAAGGATAAGCACTGTTCTGGCT | 1177 | 55 | [ | |
R-ACCATATAAGCGGTCATTCCCGTCA | |||||
耶尔森菌强毒力岛 Yersinia high-pathogenicity island | fyuA | F-TGATTAACCCCGCGACGGGAA | 880 | 55 | [ |
R-CGCAGTAGGCACGATGTTGTA | |||||
纤维素合成酶基因 Cellulose synthase operon genes | bcsA | F-GTATCGGTAGAAAGCAAACAGG | 185 | 55 | [ |
R-GAACGGTACACGAGAAGAGG | |||||
bcsB | F-CTCGTGTACCGTTCAGGATTTCT | 388 | 55 | [ | |
R-CAGCCCAACTTCATTACCCAT | |||||
Ⅰ型菌毛亚基 Type Ⅰ fimbriae | fimC | F-GGAAATAACATTCTGCTTGC | 288 | 56 | [ |
R-TTTGTTGCATCAAGAATACG | |||||
外膜蛋白基因 Outer membrane protein | ompT | F-ATCTAGCCGAAGAAGGAGGC | 559 | 55 | [ |
R-CCCGGGTCATAGTGTTCATC | |||||
铁离子摄取相关基因 Iron uptake-related gene | irp2 | F-AAGGATTCGCTGTTACCGGAC | 280 | 55 | [ |
R-TCGTCGGGCAGCGTTTCTTCT | |||||
热敏肠毒素 Heat-stable enterotoxin | LT | F-ATGAGTACTTCGATAGAGG | 279 | 55 | [ |
R-ATGGTATTCCACCTAACGC |
表3
329株大肠杆菌对24种抗菌药物的药物敏感性试验"
抗菌药物 Antibacterial agents | 耐药率 Antibiotic resistance rate (%) | 中介率 Antibiotic mediate rate (%) | 敏感率 Antibiotic sensitivity rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | 牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | 牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | |
链霉素Streptomycin | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
庆大霉素Gentamicin | 27.7 | 46.3 | 34.7 | 5.3 | 4.9 | 5.2 | 67.0 | 48.8 | 60.2 |
妥布霉素Tobramycin | 1.5 | 1.6 | 1.5 | 4.4 | 4.9 | 4.6 | 94.2 | 93.5 | 93.9 |
卡那霉素Kanamycin | 0.0 | 0.0 | 0.0 | 4.9 | 17.1 | 9.4 | 95.1 | 82.9 | 90.6 |
大观霉素Spectinomycin | 0.0 | 0.0 | 0.0 | 57.3 | 73.2 | 63.2 | 42.7 | 26.8 | 36.8 |
阿米卡星Amikacin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 | 100.0 |
氯霉素Chloramphenicol | 96.6 | 97.6 | 97.0 | 1.5 | 1.6 | 1.5 | 1.9 | 0.8 | 1.5 |
氟苯尼考Florphenicol | 9.7 | 30.9 | 17.6 | 38.8 | 36.6 | 38.0 | 51.5 | 32.5 | 44.4 |
磺胺二甲嘧啶Sulfadimidine | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
磺胺甲噁唑 Sulfamethoxazole | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
利福平Rifampicin | 52.9 | 62.6 | 56.5 | 24.3 | 31.7 | 27.1 | 22.8 | 5.7 | 16.4 |
多黏菌素B Colistin B | 3.4 | 1.6 | 2.7 | 5.8 | 8.9 | 7.0 | 90.8 | 89.4 | 90.3 |
土霉素Oxytetracycline | 41.3 | 83.7 | 57.1 | 6.8 | 4.1 | 5.8 | 51.9 | 12.2 | 37.1 |
多西环素Doxycycline | 25.2 | 48.8 | 34.0 | 11.2 | 25.2 | 16.4 | 63.6 | 26.0 | 49.5 |
萘啶酸Nalidixic acid | 11.2 | 17.9 | 13.7 | 0.0 | 0.0 | 0.0 | 88.8 | 82.1 | 86.3 |
沙拉沙星Sarafloxacin | 7.8 | 3.2 | 6.1 | 9.2 | 9.8 | 9.4 | 83.0 | 87.0 | 84.5 |
恩诺沙星Enrofloxacin | 6.8 | 4.9 | 6.1 | 4.4 | 8.9 | 6.1 | 88.8 | 86.2 | 87.8 |
环丙沙星Ciprofloxacin | 5.8 | 4.9 | 5.5 | 0.0 | 0.8 | 0.3 | 94.2 | 94.3 | 94.2 |
达氟沙星Danofloxacin | 5.8 | 3.3 | 4.9 | 8.3 | 13.0 | 10.0 | 85.9 | 83.7 | 85.1 |
左氧氟沙星 Levofloxacin | 4.4 | 2.4 | 3.6 | 1.0 | 0.0 | 0.6 | 94.7 | 97.6 | 95.7 |
氨苄西林Ampicillin | 27.7 | 49.6 | 35.9 | 1.5 | 1.6 | 1.5 | 70.9 | 48.8 | 62.6 |
头孢噻呋Ceftiofur | 1.9 | 8.9 | 4.6 | 0.5 | 1.6 | 0.9 | 97.6 | 89.4 | 94.5 |
头孢曲松Ceftriaxone | 1.9 | 12.2 | 5.8 | 1.0 | 0.8 | 0.9 | 97.1 | 87.0 | 93.3 |
头孢唑啉Cefazolin | 0.5 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 99.5 | 100.0 | 99.7 |
表4
329株大肠杆菌耐药谱型汇总"
耐药表型 Antibacterial susceptibility profiles | 菌株数 Strain numbers (%) | ||
---|---|---|---|
牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | |
AMP/CHL/CIP/CRO/CTF/DAN/DOX/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR/TOB | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CRO/CTF/DAN/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR/TOB | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/DOX/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
AMP/CHL/CIP/CZO/DAN/DOX/ENR/FLR/GEN/LVX/NAL/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/DOX/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/ENR/FLR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/DOX/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/ENR/GEN/LVX/NAL/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CIP/DAN/DOX/ENR/GEN/LVX/NAL/OXY/SAR/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CIP/CZO/DAN/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/DAN/DOX/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CRO/CTF/CZO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/ENR/FLR/GEN/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CIP/CZO/DOX/FLR/GEN/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CIP/DAN/ENR/GEN/NAL/OXY/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CRO/CTF/CZO/DOX/NAL/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CTF/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/GEN/NAL/OXY/RIF/SMX/SM2/STR | 2 (0.97) | 0 (0.00) | 2 (0.61) |
AMP/CHL/CRO/CTF/DOX/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CZO/DOX/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CTF/GEN/NAL/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CTF/DOX/GEN/OXY/POL/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/GEN/OXY/POL/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/GEN/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 2 (1.63) | 2 (0.61) |
AMP/CHL/CZO/DOX/GEN/OXY/POL/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/CRO/CZO/DOX/GEN/NAL/OXY/POL/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/CZO/DOX/FLR/GEN/NAL/OXY/SMX/SM2/STR/TOB | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/DOX/ENR/FLR/GEN/NAL/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CTF/DOX/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/OXY/POL/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/GEN/OXY/RIF/SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
AMP/CHL/CZO/FLR/GEN/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR | 3 (1.46) | 2 (1.63) | 5 (1.52) |
AMP/CHL/DOX/GEN/OXY/RIF/STR/SMX/SM2/TOB | 1 (0.49) | 0 (0.00) | 1 (0.30) |
耐药表型 Antibacterial susceptibility profiles | 菌株数 Strain numbers (%) | ||
牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | |
CHL/CZO/DOX/GEN/NAL/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 1 (0.80) | 2 (0.61) |
AMP/CHL/CRO/CTF/DOX/GEN/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CTF/DOX/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CTF/DOX/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/DOX/FLR/OXY/SMX/SM2/STR | 1 (0.49) | 1 (0.80) | 2 (0.61) |
AMP/CHL/CZO/DOX/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/FLR/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CZO/GEN/RIF/OXY/SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
AMP/CHL/DOX/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 2 (1.63) | 2 (0.61) |
AMP/CHL/DOX/FLR/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/DOX/GEN/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/FLR/GEN/OXY/RIF/SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
AMP/CHL/GEN/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/CZO/DOX/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/CZO/DOX/GEN/NAL/OXY/SMX/SM2/STR | 1 (0.49) | 1 (0.80) | 2 (0.61) |
CHL/CZO/DOX/GEN/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/DOX/GEN/FLR/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/CTF/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/CRO/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/DOX/ FLR/OXY/SMX/SM2/STR | 3 (1.46) | 0 (0.00) | 3 (0.91) |
AMP/CHL/DOX/GEN/OXY/SMX/SM2/STR | 3 (1.46) | 3 (2.44) | 6 (1.82) |
AMP/CHL/DOX/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 1 (0.80) | 2 (0.61) |
AMP/CHL/GEN/FLR/OXY/SMX/SM2/STR | 0 (0.00) | 3 (2.44) | 3 (0.91) |
AMP/CHL/GEN/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
AMP/CHL/GEN/OXY/RIF/SMX/SM2/STR | 6 (2.91) | 1 (0.80) | 7 (2.13) |
AMP/CHL/NAL/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 2 (1.63) | 2 (0.61) |
CHL/CRO/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/CTF/DOX/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/CZO/DOX/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/CZO/GEN/OXY/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/DOX/FLR/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/DOX/GEN/NAL/OXY/SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
CHL/DOX/GEN/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/GEN/FLR/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CTF/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/CZO/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/DOX/OXY/SMX/SM2/STR | 0 (0.00) | 2 (1.63) | 2 (0.61) |
AMP/CHL/OXY/RIF/SMX/SM2/STR | 4 (1.94) | 0 (0.00) | 4 (1.22) |
AMP/CHL/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 8 (6.50) | 8 (2.43) |
AMP/GEN/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/CIP/FLR/RIF/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/CZO/OXY/TOB/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
耐药表型 Antibacterial susceptibility profiles | 菌株数 Strain numbers (%) | ||
牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | |
CHL/DOX/FLR/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/DOX/GEN/OXY/SMX/SM2/STR | 2 (0.97) | 2 (1.63) | 4 (1.22) |
CHL/DOX/NAL/OXY/SMX/SM2/STR | 2 (0.97) | 0 (0.00) | 2 (0.61) |
CHL/DOX/OXY/RIF/SMX/SM2/STR | 10 (4.85) | 1 (0.80) | 11 (3.34) |
CHL/GEN/OXY/POL/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/FLR/GEN/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/GEN/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/GEN/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
GEN/OXY/RIF/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/GEN/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/OXY/SMX/SM2/STR | 0 (0.00) | 2 (1.63) | 2 (0.61) |
AMP/CHL/RIF/SMX/SM2/STR | 3 (1.46) | 0 (0.00) | 3 (0.91) |
AMP/DOX/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/CZO/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/DOX/OXY/SMX/SM2/STR | 4 (1.94) | 10 (8.13) | 14 (4.26) |
CHL/ENR/RIF/SMX/SM2/STR | 0 (0.00)) | 1 (0.80) | 1 (0.30) |
CHL/FLR/OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
CHL/FLR/RIF/SMX/SM2/STR | 2 (0.97) | 0 (0.00) | 2 (0.61) |
CHL/GEN/OXY/SMX/SM2/STR | 1 (0.49) | 2 (1.63) | 3 (0.91) |
CHL/NAL/OXY/SMX/SM2/STR | 0 (0.00) | 3 (2.44) | 3 (0.91) |
CHL/POL/RIF/SMX/SM2/STR | 3 (1.46) | 0 (0.00) | 3 (0.91) |
CHL/OXY/RIF/SMX/SM2/STR | 5 (2.43) | 1 (0.80) | 6 (1.82) |
DOX/GEN/OXY/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
DOX/OXY/RIF/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
AMP/CHL/SMX/SM2/STR | 4 (1.94) | 2 (1.63) | 6 (1.82) |
CHL/CRO/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/DOX/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/ENR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/FLR/SMX/SM2/STR | 2 (0.97) | 0 (0.00) | 2 (0.61) |
CHL/GEN/SMX/SM2/STR | 1 (0.49) | 1 (0.80) | 2 (0.61) |
CHL/OXY/SMX/SM2/STR | 1 (0.49) | 9 (7.32) | 10 (3.04) |
CHL/SAR/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
CHL/RIF/SMX/SM2/STR | 36 (17.48) | 4 (3.25) | 40 (12.16) |
CHL/SMX/SM2/STR | 57 (27.67) | 9 (7.32) | 66 (20.06) |
GEN/SMX/SM2/STR | 1 (0.49) | 0 (0.00) | 1 (0.30) |
OXY/SMX/SM2/STR | 0 (0.00) | 1 (0.80) | 1 (0.30) |
SMX/SM2/STR | 2 (0.97) | 1 (0.80) | 3 (0.91) |
表5
整合酶基因阳性菌株的耐药基因携带情况信息表"
抗菌药物类别 Classes of antibacterial agents | 基因名称 Gene name | 动物来源 Animal origin | 耐药基因阳性菌株数 Strain number of ARGs positive | |
---|---|---|---|---|
整合酶阳性 Integrase genes positive | 整合酶阴性 Integrase genes negative | |||
四环素类 Tetracyclines | tetA | 牦牛 Yaks | 8 | 7 |
藏猪Tibetan pigs | 24 | 15 | ||
tetB | 牦牛 Yaks | 3 | 4 | |
藏猪Tibetan pigs | 10 | 13 | ||
tetD | 牦牛 Yaks | 7 | 7 | |
藏猪Tibetan pigs | 12 | 11 | ||
tetM | 牦牛 Yaks | 0 | 3 | |
藏猪Tibetan pigs | 1 | 1 | ||
磺胺类 Sulfonamides | Sul1 | 牦牛 Yaks | 13 | 79 |
藏猪Tibetan pigs | 7 | 15 | ||
Sul2 | 牦牛 Yaks | 20 | 19 | |
藏猪Tibetan pig | 16 | 25 | ||
Sul3 | 牦牛 Yak | 3 | 17 | |
藏猪Tibetan pig | 16 | 25 | ||
喹诺酮类 Quinolones | qnrA | 牦牛 Yak | 0 | 2 |
藏猪Tibetan pigs | 4 | 2 | ||
qnrB | 牦牛 Yaks | 1 | 9 | |
藏猪Tibetan pigs | 10 | 14 | ||
qnrS | 牦牛 Yaks | 8 | 18 | |
藏猪Tibetan pigs | 40 | 20 | ||
qepA | 牦牛 Yaks | 0 | 2 | |
藏猪Tibetan pigs | 0 | 0 | ||
β-内酰胺类 β-lactams | blaTEM | 牦牛 Yaks | 10 | 3 |
藏猪Tibetan pigs | 22 | 6 | ||
blaDHA | 牦牛 Yaks | 28 | 16 | |
藏猪Tibetan pigs | 10 | 13 | ||
酰氨醇类 Amphenicols | floR | 牦牛 Yaks | 16 | 34 |
藏猪Tibetan pigs | 40 | 20 | ||
cmlA | 牦牛 Yaks | 1 | 12 | |
藏猪Tibetan pigs | 21 | 5 | ||
cmlB | 牦牛 Yaks | 1 | 3 | |
藏猪Tibetan pigs | 5 | 5 | ||
氨基糖苷类 Aminoglycosides | aac(3’)-Ⅳ | 牦牛 Yaks | 4 | 18 |
藏猪Tibetan pigs | 9 | 17 | ||
rmtB | 牦牛 Yaks | 4 | 20 | |
藏猪Tibetan pigs | 10 | 16 | ||
aadA2 | 牦牛 Yaks | 2 | 35 | |
藏猪Tibetan pigs | 18 | 13 | ||
aac(6’)-Ib | 牦牛 Yaks | 16 | 64 | |
藏猪Tibetan pigs | 18 | 18 | ||
aph(3’)-Ⅶ | 牦牛 Yaks | 14 | 31 | |
藏猪Tibetan pigs | 21 | 18 |
表6
329株大肠杆菌毒力基因谱型"
毒力基因谱型 Virulence genotypes | 菌株数 Strain number (%) | ||
---|---|---|---|
牦牛 Yaks | 藏猪 Tibetan pigs | 小计 Sub-total | |
eaeA/fimC/fyuA/irp2/ompT/sitA | 2(0.97) | 7(5.69) | 9(2.74) |
eaeA/fimC/fyuA/irp2/LT/sitA | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fimC/fyuA/irp2/ompT | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fyuA/irp2/ompT/sitA | 1(0.49) | 0(0.00) | 1(0.30) |
fimC/fyuA/irp2/ompT/sitA | 1(0.49) | 0(0.00) | 1(0.30) |
eaeA/fimC/fyuA/irp2 | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fimC/irp2/ompT | 1(0.49) | 1(0.80) | 2(0.61) |
eaeA/fimC/LT/ompT | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fimC/LT/sitA | 1(0.49) | 1(0.80) | 2(0.61) |
eaeA/fimC/ompT/sitA | 5(2.43) | 11(8.94) | 16(4.86) |
fimC/fyuA/irp2/ompT | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fyuA/irp2/sitA | 1(0.49) | 0(0.00) | 1(0.30) |
fimC/irp2/LT/sitA | 1(0.49) | 0(0.00) | 1(0.30) |
fimC/irp2/ompT/sitA | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fimC/fyuA | 1(0.49) | 0(0.00) | 1(0.30) |
eaeA/fimC/ompT | 5(2.43) | 6(4.88) | 11(3.34) |
eaeA/fimC/sitA | 6(2.91) | 9(7.32) | 15(4.56) |
eaeA/ompT/sitA | 0(0.00) | 2(1.63) | 2(0.61) |
fimC/fyuA/irp2 | 1(0.49) | 1(0.80) | 2(0.61) |
fimC/fyuA/ompT | 1(0.49) | 0(0.00) | 1(0.30) |
fimC/irp2/LT | 3(1.46) | 3(2.44) | 6(1.82) |
fimC/irp2/ompT | 0(0.00) | 1(0.80) | 1(0.30) |
fimC/irp2/sitA | 0(0.00) | 1(0.80) | 1(0.30) |
fimC/LT/ompT | 1(0.49) | 2(1.63) | 3(0.91) |
fimC/LT/sitA | 14(6.79) | 3(2.44) | 17(5.17) |
fimC/ompT/sitA | 17(8.25) | 7(5.69) | 24(7.29) |
LT/ompT/sitA | 0(0.00) | 1(0.80) | 1(0.30) |
eaeA/fimC | 14(6.79) | 13(10.57) | 27(8.21) |
eaeA/sitA | 0(0.00) | 5(4.07) | 5(1.52) |
fimC/LT | 4(1.94) | 2(1.63) | 6(1.82) |
fimC/ompT | 25(12.14) | 10(8.13) | 35(10.64) |
fimC/sitA | 28(13.59) | 5(4.07) | 33(10.03) |
ompT/sitA | 2(0.97) | 0(0.00) | 2(0.61) |
eaeA | 0(0.00) | 5(4.07) | 5(1.52) |
fimC | 5(2.43) | 3(2.44) | 58(17.63) |
LT | 2(0.97) | 0(0.00) | 2(0.61) |
ompT | 2(0.97) | 0(0.00) | 2(0.61) |
sitA | 10(4.85) | 7(5.69) | 17(5.17) |
ND | 31(15.05) | 13(10.57) | 44(13.37) |
[1] |
李佛生, 胡舒昶, 谢鑫, 李一璠, 汪杭, 冯兰, 杨鑫. 牦牛腹泻粪样的细菌分离鉴定与耐药性检测. 实验技术与管理, 2018, 35(12):51-56. doi: 10.16791/j.cnki.sjg.2018.12.014
doi: 10.16791/j.cnki.sjg.2018.12.014 |
LI F S, HU S C, XIE X, LI Y F, WANG H, FENG L, YANG X. Isolation, identification and antibiotics resistance test of bacteria in diarrhea fecal sample from yaks. Experimental Technology and Management, 2018, 35(12):51-56. doi: 10.16791/j.cnki.sjg.2018.12.014. (in Chinese)
doi: 10.16791/j.cnki.sjg.2018.12.014 |
|
[2] | 叶兵兵, 彭青, 李荣丽, 汤佩琦. 藏猪源大肠杆菌的分离鉴定及药敏试验. 现代农业科技, 2018, 24:223-226. |
YE B B, PENG Q, LI R L, TANG P Q. Isolation, identification and antibiotics resistance test of Escherichia coli isolated from Tibetan pigs. Modern Agricultural Science and Technology, 2018, 24:223-226. (in Chinese) | |
[3] |
陈朝喜, 贺冬梅, 汤承. 川西北高原2009—2016年牦牛源大肠杆菌耐药性变迁和整合子携带分析. 中国农业科学, 2017, 50(9):1705-1713. doi: 10.3864/j.issn.0578-1752.2017.09.016.
doi: 10.3864/j.issn.0578-1752.2017.09.016 |
CHEN C X, HE D M, TANG C. Vicissitude of drug resistance and integron-carrying of Escherichia coli isolated from yak between 2009 and 2016 in northwest Sichuan plateau. Scientia Agricultura Sinica, 2017, 50(9):1705-1713. doi: 10.3864/j.issn.0578-1752.2017.09.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.09.016 |
|
[4] |
THABIT A K, CRANDON J L, NICOLAU D P. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opinion on Pharmacotherapy, 2015, 16(2):159-177. doi: 10.1517/14656566.2015.993381.
doi: 10.1517/14656566.2015.993381 |
[5] |
JIANG H X, LÜ D H, CHEN Z L, WANG X M, CHEN J R, LIU Y H, LIAO X P, LIU J H, ZENG Z L. High prevalence and widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. Veterinary Journal (London, England), 2011, 187(1):99-103. doi: 10.1016/j.tvjl.2009.10.017.
doi: 10.1016/j.tvjl.2009.10.017 |
[6] | 白雪. 猪源大肠杆菌耐药性分析及ESBLs类基因的质粒传播[D]. 杨凌: 西北农林科技大学, 2018. |
BAI X. Study on the antibacterial resistance of Escherichia coli in swine origin and the transmission of ESBL genes by plasmids[D]. Yangling: Northwest A & F University, 2018. (in Chinese) | |
[7] | 杨承霖, 舒刚, 赵小玲, 王爽, 林居纯. 2010—2016年四川省食品动物源大肠杆菌的耐药性研究. 西北农林科技大学学报(自然科学版), 2020(9):24-30, 36. |
YANG C L, SHU G, ZHAO X L, WANG S, LIN J C. Drug resistance of Escherichia coli isolates from food-animals obtained from 2010 to 2016 in Sichuan. Journal of Northwest A & F University (Natural Science Edition), 2020(9):24-30, 36. (in Chinese) | |
[8] | 陆光武. 鸡、猪、奶牛源大肠杆菌的耐药性与其I类整合子和质粒相关性研究[D]. 扬州: 扬州大学, 2016. |
LU G W. Study on the antibiotic resistance of Escherichia coli isolated from chickens, pigs, cows and its correlation with class 1integron and plasmids[D]. Yangzhou:Yangzhou University, 2016. (in Chinese) | |
[9] |
HALL-STOODLEY L, STOODLEY P. Evolving concepts in biofilm infections. Cellular Microbiology, 2009, 11(7):1034-1043. doi: 10.1111/j.1462-5822.2009.01323.x.
doi: 10.1111/j.1462-5822.2009.01323.x |
[10] |
RIBEIRO S M, FELÍCIO M R, BOAS E V, GONÇALVES S, COSTA F F, SAMY R P, SANTOS N C, FRANCO O L. New frontiers for anti-biofilm drug development. Pharmacology & Therapeutics, 2016, 160:133-144. doi: 10.1016/j.pharmthera.2016.02.006.
doi: 10.1016/j.pharmthera.2016.02.006 |
[11] |
SHARMA G, SHARMA S, SHARMA P, CHANDOLA D, DANG S, GUPTA S, GABRANI R. Escherichia coli biofilm: Development and therapeutic strategies. Journal of Applied Microbiology, 2016, 121(2):309-319. doi: 10.1111/jam.13078.
doi: 10.1111/jam.13078 |
[12] | 陈朝喜, 杨金福, 陈伟明. 大肠杆菌毒力因子agn43与生物被膜表型相关性研究. 中国畜牧兽医, 2012(4):76-78. |
CHEN C X, YANG J F, CHEN W M. Studies on correlation between E. coli virulence factor agn43 and Biofilm-forming ability. China Animal Husbandry & Veterinary Medicine, 2012(4):76-78. (in Chinese) | |
[13] |
VOGELEER P, TREMBLAY Y D, MAFU A A, JACQUES M, HAREL J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Frontiers in Microbiology, 2014, 5:317. doi: 10.3389/fmicb.2014.00317.
doi: 10.3389/fmicb.2014.00317 |
[14] |
RIJAVEC M, MÜLLER-PREMRU M, ZAKOTNIK B, ŽGUR- BERTOK D. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. Journal of Medical Microbiology, 2008, 57(pt 11):1329-1334. doi: 10.1099/jmm.0.2008/002543-0.
doi: 10.1099/jmm.0.2008/002543-0 |
[15] | 姜露, 聂佳佳, 杨样, 周明旭, 朱国强. K88ac^+和K88ad^+产肠毒素大肠杆菌hlyA基因缺失株的构建及相关功能初步分析. 中国预防兽医学报, 2014(7):524-529. |
JIANG L, NIE J J, YANG Y, ZHOU M X, ZHU G Q. The construction of hlyA gene deletion mutants from ETEC K88ac^+/ K88ad^+ and related function analysis. Chinese Journal of Preventive Veterinary Medicine, 2014(7):524-529. (in Chinese) | |
[16] |
BARDIAU M, SZALO M, MAINIL J G. Initial adherence of EPEC, EHEC and VTEC to host cells. Veterinary Research, 2010, 41(5):57.
doi: 10.1051/vetres/2010029 |
[17] |
STEPANOVIC S, CIRKOVIC I, RANIN L, VLAHOVIC M S. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 2004, 38(5):428-432.
doi: 10.1111/lam.2004.38.issue-5 |
[18] |
王晓泉, 王彦红, 吴双, 焦新安, 潘志明, 刘秀梵. 四环素耐药基因在鸡源沙门氏菌中的分布和传播. 中国家禽, 2007, 29(9):10-12, 18. doi: 10.3969/j.issn.1004-6364.2007.09.003
doi: 10.3969/j.issn.1004-6364.2007.09.003 |
WANG X Q, WANG Y H, WU S, JIAO X N, PAN Z M, LIU X F. Distribution and spread of tetracycline resistance genes among Salmonella enterica isolates from chicken. China Poultry, 2007, 29(9):10-12, 18. doi: 10.3969/j.issn.1004-6364.2007.09.003. (in Chinese)
doi: 10.3969/j.issn.1004-6364.2007.09.003 |
|
[19] | 坤清芳, 耿毅, 余泽辉, 李亚军, 牟维豪, 谢航. 四川兔源大肠埃希菌的耐药性及耐药基因检测. 湖南农业大学学报(自然科学版), 2018(5):549-552. |
KUN Q F, GENG Y, YU Z H, LI Y J, MOU W H, XIE H. Antibiotic resistance and resistance genes detection of Escherichia coli in Sichuan rabbits. Journal of Hunan Agricultural University (Natural Sciences), 2018(5):549-552. (in Chinese) | |
[20] |
罗芳. 武汉地区生殖道支原体对四环素类药物的耐药性分析. 中外医学研究, 2013, 11(6):69-70. doi: 10.3969/j.issn.1674-6805.2013.06.048.
doi: 10.3969/j.issn.1674-6805.2013.06.048 |
LUO F. Drug resistance Analysis of mycoplasma genitalium to tetracycline drugs in Wuhan. Chinese and Foreign Medical Research, 2013, 11(6):69-70. doi: 10.3969/j.issn.1674-6805.2013.06.048. (in Chinese)
doi: 10.3969/j.issn.1674-6805.2013.06.048 |
|
[21] | 张珍. 鸡源致病性沙门氏菌毒力基因与致病性的相关性研究[D]. 南宁: 广西大学, 2017. |
ZHANG Z. Study on the correlation between virulence genes and pathogenicity of chicken pathogenic salmonella[D]. Nanning: Guangxi University, 2017. (in Chinese) | |
[22] | 李壹, 曲凌云, 朱鹏飞, 田欣欣, 王琛. 山东地区海水养殖区常见抗生素耐药菌及耐药基因分布特征. 海洋环境科学, 2016, 35(1):55-62. |
LI Y, QU L Y, ZHU P F, TIAN X X, WANG C. Distribution characteristics of antibiotic resistance bacteria and related resistance genes in mariculture area of Shandong. Marine Environmental Science, 2016, 35(1):55-62. (in Chinese) | |
[23] |
CHEN S, ZHAO S, WHITE D G, SCHROEDER C M, LU R, YANG H C, MCDERMOTT P F, AYERS S, MENG J H. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Applied Environmental Microbiology, 2004, 70(1):1-7.
doi: 10.1128/AEM.70.1.1-7.2004 |
[24] |
赖海梅, 刘书亮, 邹立扣, 韩新锋, 周康, 朱冬梅, 彭珍, 李建龙. 肉鸡屠宰场多重耐药沙门氏菌Ⅰ类整合子与磺胺类耐药基因(sul1、sul2和sul3)的检测. 食品科学, 2014, 35(24):178-183. doi: 10.7506/spkx1002-6630-201424034.
doi: 10.7506/spkx1002-6630-201424034 |
LAI H M, LIU S L, ZOU L K, HAN X F, ZHOU K, ZHU D M, PENG Z, LI J L. Detection of integton-1 and sulphonamide resistant genes of multi-drug resistant Salmonella species isolated from broiler slaughterhouse. Food Science, 2014, 35(24):178-183. doi: 10.7506/spkx1002-6630-201424034. (in Chinese)
doi: 10.7506/spkx1002-6630-201424034 |
|
[25] |
岳磊, 蒋红霞, 刘健华, 廖晓萍, 李树娟, 陈雪影, 吴彩霞, 张小云, 刘雅红. 鸡源肠杆菌质粒介导喹诺酮类耐药基因检测. 中国农业科学, 2009, 42(8):2966-2971. doi: 10.3864/j.issn.0578-1752.2009.08.040.
doi: 10.3864/j.issn.0578-1752.2009.08.040 |
YUE L, JIANG H X, LIU J H, LIAO X P, LI S J, CHEN X Y, WU C X, ZHANG X Y, LIU Y H. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae from avian. Scientia Agricultura Sinica, 2009, 42(8):2966-2971. doi: 10.3864/j.issn.0578-1752.2009.08.040. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2009.08.040 |
|
[26] | 余娴, 袁斌, 雷军. 产“超-超广谱”β-内酰胺酶革兰阴性杆菌的耐药表型及基因分析. 中国抗生素杂志, 2011, 36(1):56-59. |
YU X, YUAN B, LEI J. Resistant phenotype and genotype analyses of super-spectrum β-lactamase-producing Gram-negative bacilli. Chinese Journal of Antiblotics, 2011, 36(1):56-59. (in Chinese) | |
余娴, 袁斌, 雷军. 产“超-超广谱”β-内酰胺酶革兰阴性杆菌的耐药表型及基因分析. 中国抗生素杂志, 2011(1):56-59. | |
YU X, YUAN B, LEI J. Resistant phenotype and genotype analyses of super-spectrum β-lactamase-producing Gram-negative bacilli. Chinese Journal of Antibiotics, 2011(1):56-59.(in Chinese) | |
[27] |
白丽霞, 杨虹. PCR和HRM两种方法检测细菌耐药基因aac(6')-Ib-cr的比较研究. 国际检验医学杂志, 2017, 38(3):319-320, 323. doi: 10.3969/j.issn.1673-4130.2017.03.011
doi: 10.3969/j.issn.1673-4130.2017.03.011 |
BAI L X, YANG H. Comparison of PCR and HRM for detecting bacterial drug resistance gene aac (6')-Ib-cr. International Journal of Laboratory Medicine, 2017, 38(3):319-320, 323. doi: 10.3969/j.issn.1673-4130.2017.03.011. (in Chinese)
doi: 10.3969/j.issn.1673-4130.2017.03.011 |
|
[28] |
SANDVANG D, AARESTRUP F M. Characterization of aminoglycoside resistance genes and class 1 integrons in porcine and bovine gentamicin-resistant Escherichia coli. Microbial Drug Resistance (Larchmont,N Y), 2000, 6(1):19-27. doi: 10.1089/mdr.2000.6.19.
doi: 10.1089/mdr.2000.6.19 |
[29] | 王英, 汤承, 于学辉, 王远微, 岳华. 多重PCR方法检测鸭源产志贺氏毒素大肠杆菌. 中国预防兽医学报, 2009, 31(10):780-784. |
WANG Y, TANG C, YU X H, WANG Y W, YUE H. A multiplex PCR for detection of Shiga Toxin-producing Escherichia coli isolated from ducks. Chinese Journal of Preventive Veterinary Medicine, 2009, 31(10):780-784. (in Chinese) | |
[30] |
CLERMONT O, BINGEN E. Rapid and simple determination of the Escherichia coli phylogenetic group. Applied Environmental Microbiology, 2000, 66(10):4555-4558.
doi: 10.1128/AEM.66.10.4555-4558.2000 |
[31] |
JOHNSON J R, VAN DER SCHEE C, KUSKOWSKI M A, GOESSENS W, VAN BELKUM A. Phylogenetic background and virulence profiles of fluoroquinolone-resistant clinical Escherichia coli isolates from the Netherlands. The Journal of Infectious Diseases, 2002, 186(12):1852-1856. doi: 10.1086/345767.
doi: 10.1086/345767 |
[32] | JAVAD M, KUMARSS A. Detection of virulence genes in uropathogenic E. coli (UPEC) strains by multiplex-PCR method. Journal of Fasa University Medical Science, 2017, 7(1):1128-1133. |
[33] |
HU L, GRIM C J, FRANCO A A, JARVIS K G, SATHYAMOORTHY V, KOTHARY M H, MCCARDELL B A, TALL B D. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: prevalence among species and their roles in biofilm formation and cell-cell aggregation. Food Microbiology, 2015, 52:97-105. doi: 10.1016/j.fm.2015.07.007.
doi: 10.1016/j.fm.2015.07.007 |
[34] |
JEONG Y W, KIM T E, KIM J H, KWONH J. Pathotyping avian pathogenic E.coli strains in Korea. Journal of Veterinary Science, 2012, 13(2):145-152.
doi: 10.4142/jvs.2012.13.2.145 |
[35] | 彭青, 李荣丽, 汤佩琦, 叶兵兵. 藏猪腹泻物中细菌的分离鉴定及药敏试验. 四川畜牧兽医, 2019(3):33-34, 37. |
PENG Q, LI R L, TANG P Q, YE B B. Isolation, identification and drug sensitivity test of bacteria from Tibetan pig diarrhea. Sichuan Animal & Veterinary Sciences, 2019(3):33-34, 37. (in Chinese) | |
[36] |
SOUFI L, SÁENZ Y, VINUÉ L, ABBASSI M S, RUIZ E, ZARAZAGA M, BEN HASSEN A, HAMMAMI S, TORRES C. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. International Journal of Food Microbiology, 2011, 144(3):497-502. doi: 10.1016/j.ijfoodmicro.2010.11.008.
doi: 10.1016/j.ijfoodmicro.2010.11.008 |
[37] |
张艳芳, 孟晓俣, 陈可心, 方瑞, 冯涛, 薛原. 东北地区鹿源大肠杆菌的毒力基因检测. 经济动物学报, 2020. doi: 10.13326/j.jea.2018.1337.
doi: 10.13326/j.jea.2018.1337 |
ZHANG Y F, MENG X Y, CHEN K X, FANG R, FENG T, XUE Y. Detection of virulence genes of E.coli from deer in Northeast China. Journal of Economic Animal, 2020. doi: 10.13326/j.jea.2018.1337. (in Chinese)
doi: 10.13326/j.jea.2018.1337 |
|
[38] |
COURA F M, DINIZ S A, SILIVA M X, ARCEBISMO T L M, MINHARRO S, FEITOSA A C F, LAGE A P, KNOB T, MUSSI J M S, HEINEMANN M B. Phylogenetic group of Escherichia coli isolates from broilers in brazilian poultry slaughterhouse. Scientific World Journal, 2017:1-7. doi: 10.1155/2017/5898701.
doi: 10.1155/2017/5898701 |
[39] | 王刚, 索朗斯珠, 强巴央宗. 西藏藏猪源大肠杆菌毒力基因检测与分型. 甘肃畜牧兽医, 2017(6):75-78. |
WANG G, SUO L S Z, QIANG B Y Z. Detection and typing of virulence genes of Escherichia coli isolated from Tibetan pigs in Tibet. Gansu Animal Husbandry and Veterinary, 2017(6):75-78. (in Chinese) | |
[40] |
周陆红, 张鹏飞, 张杰, 吴聪明, 唐晓双, 郝丹, 王新. 屠宰猪中大肠杆菌毒力基因检测及耐药性分析. 食品科学, 2019, 40(2):264-268. doi: 10.7506/spkx1002-6630-20180405-064.
doi: 10.7506/spkx1002-6630-20180405-064 |
ZHOU L H, ZHANG P F, ZHANG J, WU C M, TANG X S, HAO D, WANG X. Virulence genes and antimicrobial resistance of Escherichia coli isolated from slaughtered pigs. Food Science, 2019, 40(2):264-268. doi: 10.7506/spkx1002-6630-20180405-064. (in Chinese)
doi: 10.7506/spkx1002-6630-20180405-064 |
[1] | 刘教,刘畅,陈进,王勉之,熊文广,曾振灵. 多重耐药大肠杆菌中前噬菌体的分布特征及诱导分离[J]. 中国农业科学, 2022, 55(7): 1469-1478. |
[2] | 唐子云,胡健欣,陈进,陆毅兴,孔伶俐,刁露,张发福,熊文广,曾振灵. 动物源金黄色葡萄球菌生物被膜形成能力与分子分型关系研究[J]. 中国农业科学, 2022, 55(3): 602-612. |
[3] | 王雪杨,蒋君瑶,杨璐,邵东延,吴聪明,沈建忠,沈应博,汪洋. 黏菌素促进mcr-1阳性IncI2质粒在大肠杆菌间的接合转移[J]. 中国农业科学, 2022, 55(14): 2862-2874. |
[4] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
[5] | 张爱静,李琳琼,王鹏杰,高瑀珑. 热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J]. 中国农业科学, 2020, 53(5): 1046-1057. |
[6] | 杨君,楚品品,宋帅,蔡汝健,杨冬霞,卞志标,勾红潮,李艳,蒋智勇,李春玲,闫鹤. 副猪嗜血杆菌lpxM基因缺失株构建及生物学特性分析[J]. 中国农业科学, 2020, 53(16): 3394-3403. |
[7] | 黄赛男,金澄艳,鲍建军,王悦,陈炜昊,吴天弋,王利宏,吕晓阳,高雯,王步忠,朱国强,戴国俊,孙伟. F17大肠杆菌在湖羊羔羊个体脾脏中LncRNA表达谱变化[J]. 中国农业科学, 2019, 52(7): 1282-1294. |
[8] | 邹双霞,金澄艳,鲍建军,王悦,陈炜昊,吴天弋,王利宏,吕晓阳,高雯,王步忠,朱国强,戴国俊,师东方,孙伟. 感染大肠杆菌F17湖羊羔羊脾脏中差异circRNA分析[J]. 中国农业科学, 2019, 52(6): 1090-1101. |
[9] | 陈文凤,王红芳,刘振国,张卫星,郗学鹏,胥保华. 中华蜜蜂Apidaecin的重组表达及其抗菌活性[J]. 中国农业科学, 2019, 52(4): 767-776. |
[10] | 于海龙,李志远,杨丽梅,刘玉梅,庄木,吕红豪,李占省,方智远,张扬勇. 芥蓝BC3代Ogura CMS育性恢复材料的创制及Rfo基因传递和背景分析[J]. 中国农业科学, 2018, 51(9): 1746-1757. |
[11] | 孙小涵,张碧成,张强,何孔旺,张雪寒. 非致病性大肠杆菌鞭毛蛋白对O型口蹄疫病毒的佐剂效果[J]. 中国农业科学, 2017, 50(9): 1714-1722. |
[12] | 曲志娜,刘红玉,王娟,赵思俊,李玉清,黄秀梅,盖文燕,王君玮. 青岛地区产ESBLs鸡源大肠杆菌耐药性调查与优势基因型分析[J]. 中国农业科学, 2015, 48(10): 2058-2066. |
[13] | 南海辰,底丽娜,夏利宁. 新疆多源喹诺酮类耐药大肠杆菌耐药基因检测及分析[J]. 中国农业科学, 2014, 47(20): 4096-4108. |
[14] | 仝永娟1, 萨仁娜1, 张宏福1, 孙春阳1, 邢焕1, 彭易柱1, 魏忠华2, 王学静2. 三株芽孢杆菌抑菌活性分析及对肉鸡舍空气微生物的影响[J]. 中国农业科学, 2013, 46(20): 4344-4353. |
[15] | 白灏1, 2, 韩先干1, 刘蕾1, 祁克宗2, 刘海文1, 丁铲1, 于圣青1. 影响禽致病性大肠杆菌信号分子AI-2产生的因素分析[J]. 中国农业科学, 2013, 46(15): 3220-3226. |
|