中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2179-2191.doi: 10.3864/j.issn.0578-1752.2021.10.013
孙洪影1(),王岩1,李伟佳1,2,朱天姝1,姜颖1,许妍1,吴清悦1,张志宏1(
)
收稿日期:
2020-08-05
接受日期:
2020-11-14
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
张志宏
作者简介:
孙洪影,E-mail: 基金资助:
SUN HongYing1(),WANG Yan1,LI WeiJia1,2,ZHU TianShu1,JIANG Ying1,XU Yan1,WU QingYue1,ZHANG ZhiHong1(
)
Received:
2020-08-05
Accepted:
2020-11-14
Online:
2021-05-16
Published:
2021-05-24
Contact:
ZhiHong ZHANG
摘要:
【目的】新型植物激素独脚金内酯是调控植物分枝发育的关键因子,但独脚金内酯在草莓生长发育中的作用尚不清楚。揭示森林草莓(Fragaria vesca)中独脚金内酯生物合成关键基因DWARF27(D27)的表达特性及主要功能,探索FveD27在草莓分枝以及生长发育过程中的作用,为研究草莓植株构型奠定理论基础。【方法】本研究选用森林草莓作为试验材料,利用RT-PCR方法克隆FveD27的编码区序列,利用MEGA 6.0分析草莓FveD27与苹果、拟南芥等物种中D27的系统进化关系;构建FveD27与GFP的融合载体,利用注射烟草叶片的方法对FveD27进行亚细胞定位分析;通过qRT-PCR技术对FveD27在森林草莓不同器官的表达水平进行定量分析,同时构建FveD27启动子与GUS融合表达载体并通过农杆菌介导法将其转化到森林草莓中,利用GUS染色进一步分析FveD27的表达特性;构建FveD27过表达载体并通过农杆菌介导的叶盘法进行稳定遗传转化,获得FveD27过表达草莓株系。【结果】从森林草莓中克隆出编码区长度为789 bp的FveD27序列;烟草的亚细胞定位结果表明FveD27定位在叶绿体;FveD27在森林草莓组织器官中的表达量由高至低依次为幼叶、茎尖、叶柄、成熟叶、根;克隆出长度为1 670 bp的FveD27启动子序列,GUS活性分析结果显示转pFveD27::GUS融合基因草莓植株的幼叶和芽等部位GUS活性较强,而成熟叶与叶柄部位GUS活性较弱,根部几乎无GUS活性,GUS染色分析揭示的基因表达结果与qRT-PCR结果相符;构建了FveD27过表达载体并通过农杆菌介导获得了过表达FveD27的草莓转基因株系,表型调查结果表明过表达FveD27能够显著抑制新茎分枝的形成,同时增加花序数量。【结论】FveD27具有调控森林草莓新茎分枝发育、花序数量等功能。研究结果可为调控草莓新茎分枝数量和产量等提供新思路。
孙洪影,王岩,李伟佳,朱天姝,姜颖,许妍,吴清悦,张志宏. 森林草莓FveD27的表达特性和功能[J]. 中国农业科学, 2021, 54(10): 2179-2191.
SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry[J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
表1
本试验所用引物"
引物 Primer | 序列(5′→3′) Sequence(5′→3′) | 目的 Purpose |
---|---|---|
FveD27-F FveD27-R | ACGCGTCGACATGGAAGCATCACATTTCT CGCGGATCCCTAACTGGAGCAGTTAT | 基因全长克隆 Full-length gene cloning |
FveD27-DL-F FveD27-DL-R | AGCAGAATAAGACCGGCAGA TGCAGCTTGGACATTTTGAG | 实时荧光定量 Real-time PCR |
Fve-26S-F Fve-26S-R | TAACCGCATCAGGTCTCCAA CTCGAGCAGTTCTCCGACAG | 内参基因 Reference gene |
FveD27(eGFP)-F FveD27(eGFP)-R | TCCCCCGGGATGGAAGCATCACATTT CGGGGTACCACTGGAGCAGTTATTGT | 亚细胞定位 Subcellular localization |
proFveD27-F proFveD27-R | GCTGCAGGCTGATTCCTAAGGGTATC TGCTCTAGAATGCATGGTGGGGAATTTAAAG | 启动子克隆 Promoter cloning |
图2
FveD27序列的比对结果 FveD27 NCBI-Nseq:FveD27基因NCBI核酸序列 Nucleic acid sequence of FveD27 gene in NCBI;FveD27 RNA-Nseq:FveD27基因转录组测序核酸序列 Nucleic acid sequence of FveD27 gene in RNA-seq;FveD27 PCR-Nseq:FveD27基因PCR扩增核酸序列 Nucleic acid sequence of FveD27 gene in PCR amplification;FveD27 NCBI-Pseq:FveD27 NCBI氨基酸序列, Amino acid sequence of FveD27 in NCBI;FveD27 RNA-Pseq:FveD27转录组测序氨基酸序列 Amino acid sequence of FveD27 in RNA-seq;FveD27 PCR-Pseq:FveD27 PCR扩增氨基酸序列 Amino acid sequence of FveD27 in PCR amplification A:FveD27基因序列比较;B:FveD27氨基酸序列比较"
图3
D27保守结构域分析 AtD27:拟南芥Arabidopsis thaliana,NP_563673.1;CpaD27:番木瓜Carica papaya,XP_021894148.1;FveD27:森林草莓Fragaria vesca,XP_004290643.1;GmD27:大豆Glycine max,XP_003518899.1;MdD27:苹果Malus domestica,XP_028956369.1;OsD27:水稻Oryza sativa,XP_015615253.1;TcD27:烟草Theobroma cacao,XP_017975973.1;VvD27:葡萄Vitis vinifera,XP_003634993.2;ZmD27:玉米Zea mays,XP_008670838.1 A:FveD27蛋白中DUF4033结构域;B:高等植物中D27蛋白保守结构域序列比对"
表2
FveD27启动子相关顺式作用元件的预测"
顺式作用元件 cis-regulatory element | 位置(方向) Position(stand) | 序列 Sequence | 功能 Function |
---|---|---|---|
ACA-motif | 247(-) | AATCACAACCATA | (gapA-CMA1)中gapA的一部分涉及光响应性 Part of gapA in (gapA-CMA1) involved with light responsiveness |
AE-box | 405(-) | AGAAACAA | 光响应的元件的一部分 Part of a module for light response |
GT1-motif | 382(+) | GGTTAA | 光响应元件 Light responsive element |
I-box | 345(-), 986(+) | TGATAATGT | 光响应元件的一部分 Part of a light responsive element |
LAMP-element | 181(+) | CTTTATCA | 光响应元件的一部分 Part of a light responsive element |
TCT-motif | 1159(-) | AACGAC | 光响应元件的一部分 Part of a light responsive element |
MRE | 379(-) | AACCTAA | 参与光诱导的MYB绑定位点 MYB binding site involved in light responsiveness |
CCAAT-box | 881(+) | CAACGG | MYBHv1结合位点 MYBHv1 binding site |
MBS | 1487(-) | CAACTG | 参与干旱诱导的MYB绑定位点 MYB binding site involved in drought-inducibility |
GC-motif | 920(-) | CCCCCG | 参与缺氧特异性诱导性的增强子元件 Enhancer-like element involved in anoxic specific inducibility |
ARE | 1781(+) | AAACCA | 厌氧诱导的必要顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction |
TCA-element | -384(-), -1107(-) | CAGAAAAGGA | 水杨酸响应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness |
P-box | 117(+) | CCTTTTG | 赤霉素响应元件 Gibberellin-responsive element |
TATC-box | 1127(-) | TATCCCA | 赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness |
TGACG-motif | 1406(-), 1413(+) | TGACG | MeJA响应的顺式作用元件 cis-acting regulatory element involved in the MeJA-responsiveness |
CGTCA-motif | 1406(+), 1413(-) | CGTCA | MeJA响应的顺式作用元件 cis-acting regulatory element involved in the MeJA-responsiveness |
TATA-box | 188(-) | TATAATAAT | 转录起始位点上游-30左右位置的核心启动元件 The core activation element at about -30 upstream of the transcription start site |
[1] | 冯丹, 陈贵林. 独脚金内酯调控侧枝发育的研究进展. 生态学杂志, 2011,30(2):349-356. |
FENG D, CHEN G L. Shoot-branching control with strigolactones: Research progress. Chinese Journal of Ecology, 2011,30(2):349-356. (in Chinese) | |
[2] | 胡盼盼, 张香粉, 赵霞, 李刚, 赵凤莉, 李亮杰, 周厚成. 草莓新茎分枝与独脚金内酯的关系. 果树学报, 2019,36(5):578-589. |
HU P P, ZHANG X F, ZHAO X, LI G, ZHAO F L, LI L J, ZHOU H C. Relation betweenship strigolactones and branching in strawberry. Journal of Fruit Science, 2019,36(5):578-589. (in Chinese) | |
[3] |
GOMEZ-ROLDAN V, FERMAS S, BREWER P B, PUECH-PAGÈS V, DUN E A, PILLOT J P, LETISSE F, MATUSOVA R, DANOUN S, PORTAIS J C, BOUWMEESTER H, BÉCARD G, BEVERIDGE C A, RAMEAU C, ROCHANGE S F. Strigolactone inhibition of shoot branching. Nature, 2008,455:189-194.
doi: 10.1038/nature07271 |
[4] |
RAMEAU C. Strigolactones, a novel class of plant hormone controlling shoot branching. Comptes Rendus Biologies, 2010,333(4):344-349.
doi: 10.1016/j.crvi.2010.01.012 |
[5] |
DOMAGALSKA M A, LEYSER O. Signal integration in the control of shoot branching. Nature Reviews: Molecular Cell Biology, 2011,12(4):211-221.
doi: 10.1038/nrm3088 |
[6] |
ALDER A, HOLDERMANN I, BEYER P, AL-BABILI S. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. The Biochemical Journal, 2008,416(2):289-296.
doi: 10.1042/BJ20080568 |
[7] |
BRUNO M, AL-BABILI S. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta, 2016,243:1429-1440.
doi: 10.1007/s00425-016-2487-5 |
[8] |
YAO R F, LI J Y, XIE D X. Recent advances in molecular basis for strigolactone action. Science China: Life Science, 2018,61:277-284.
doi: 10.1007/s11427-017-9195-x |
[9] |
XIONG G S, WANG Y H, LI J Y. Action of strigolactones in plants. Enzyme, 2014,35:57-84.
doi: 10.1159/000469319 |
[10] |
LIN H, WANG R X, QIAN Q, YAN M X, MENG X B, FU Z M, YAN C Y, JIANG B, SU Z, LI J Y, WANG Y H. DWARF27, an iron- containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009,21(5):1512-1525.
doi: 10.1105/tpc.109.065987 |
[11] |
WATERS M T, BREWER P B, BUSSELL J D, SMITH S M, BEVERIDGE C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 2012,159(3):1073-1085.
doi: 10.1104/pp.112.196253 |
[12] |
WEN C, ZHAO Q C, NIE J, LIU G Q, SHEN L, CHENG C X, XI L, MA N, ZHAO L J. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Reports, 2016,35:1053-1070.
doi: 10.1007/s00299-016-1938-6 |
[13] | 武亭亭. 小麦独脚金内酯合成相关基因TaDWARF27的分离与功能分析[D]. 泰安: 山东农业大学, 2016. |
WU T T. Isolation and functional analysis of TaDWARF27 in Triticum aestivum L[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese) | |
[14] |
LIU W, KOHLEN W, LILLO A, CAMP R O D, IVANOV S, HARTOG M, LIMPENS E, JAMIL M, SMACZNIAK C, KAUFMANN K, YANG W C, HOOIVELD G, CHARNIKHOVA T, BOUWMEESTER H J, BISSELING T, GEURTS R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 2011,23(10):3853-3865.
doi: 10.1105/tpc.111.089771 |
[15] | 赵晨晨, 范雅丽, 秦岭, 邢宇, 房克凤, 张卿, 曹庆芹. 森林草莓独脚金内酯合成关键基因D27的克隆与表达分析. 园艺学报, 2016,43(5):975-982. |
ZHAO C C, FAN Y L, QIN L, XING Y, FANG K F, ZHANG Q, CAO Q Q. The cloning and expression analysis of D27 gene of Strigolactone biosynthesis pathway in Fragaria vesca. Acta Horticulture Sinica, 2016,43(5):975-982. (in Chinese) | |
[16] | 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析. 作物学报, 2017,43(1):31-41. |
WU C D, LIU X L, LIU J Y, ZAN F G, LI X J, LIU H B, LIN X Q, CHEN X K, SU H S, ZHAO P F, WU C W. Cloning and expression analysis of the key gene ScD27 in Strigolactones biosynthesis pathway. Acta Agronomica Sinica, 2017,43(1):31-41. (in Chinese) | |
[17] | 李炎坤. 青天葵独脚金内酯合成关键基因D27的克隆与功能分析[D]. 广州: 广州中医药大学, 2019. |
LI Y K. Cloning and function analysis of D27, the key gene for Strigolactones Synthesis from Nervilia fordii [D]. Guangzhou: Guangzhou University of Chinese Medicine, 2019. (in Chinese) | |
[18] |
WU H, LI H H, CHEN H, QI Q, DING Q Q, XUE J, DING J, JIANG X N, HOU X L, LI Y. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). BMC Plant Biology, 2019,19(1):73.
doi: 10.1186/s12870-019-1673-6 |
[19] | 李伟佳. 草莓匍匐茎发生基因的定位克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018. |
LI W J. Positional cloning and identification of runner producing gene in strawberry[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[20] |
CHANG L L, ZHANG Z H, YANG H, LI H, DAI H Y. Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. Journal of Phytopathology, 2007,155(7):431-436.
doi: 10.1111/jph.2007.155.issue-7-8 |
[21] | WANG X Q, SHEN X, HE Y M, REN T T, WU W T, XI T. An optimized freeze-thaw method for transformation of Agrobacterium tumefaciens EHA105 and LBA4404. Pharmaceutical Biotechnology, 2011,18(5):382-386. |
[22] | 于一帆, 朱小彬, 葛会敏, 陈云. 基于绿色荧光蛋白瞬时表达的植物亚细胞定位方法. 江苏农业科学, 2014,42(12):58-61. |
YU Y F, ZHU X B, GE H M, CHEN Y. Subcellular localization in plants based on transient expression of green fluorescent protein. Jiangsu Agricultural Sciences, 2014,42(12):58-61. (in Chinese) | |
[23] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 |
[24] |
LI Y P, WEI W, FENG J, LUO H F, PI M T, LIU Z C, KANG C Y. Genome reannotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets. DNA Research, 2017,25(1):61-70.
doi: 10.1093/dnares/dsx038 |
[25] |
LI W J, ZHANG J X, SUN H Y, MA Y, LIU Y X, LI H, ZHANG Z H. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. Planta, 2018,247(4):941-951.
doi: 10.1007/s00425-017-2839-9 |
[26] | 孙洪影. 森林草莓FveD27基因分离鉴定及表达特性分析[D]. 沈阳: 沈阳农业大学, 2019. |
SUN H Y. Identification and expression analysis of FveD27 gene in woodland strawberry[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) | |
[27] |
MOUHU K, KUROKURA T, KOSKELA E A, ALBERT V A, ELOMAA P, HYTÖNEN T. The Fragaria vesca homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 represses flowering and promotes vegetative growth. The Plant Cell, 2013,25(9):3296-3310.
doi: 10.1105/tpc.113.115055 |
[28] |
BREWER P B, DUN E A, FERGUSON B J, RAMEAU C, BEVERIDGE C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009,150:482-493.
doi: 10.1104/pp.108.134783 |
[29] | 贾昆鹏. 植物激素独脚金内酯和茉莉酸信号与光信号互作的分子机制研究[D]. 上海: 上海交通大学, 2014. |
JIA K P. The molecular mechanism of cross-talking between light and phytohormones Strigolactone- and Jasmonate-signaling[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese) | |
[30] |
ZHANG J, MAZUR E, BALLA J, GALLEI M, KALOUSEK P, MEDVEĎOVÁ Z, LI Y, WANG Y P, PRÁT T, VASILEVA M, REINÖH V, PROCHÁZKA S, HALOUZKA R, TARKOWSKI P, LUSCHNIG C, BREWER P B, FRIML J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications, 2020,11(1):3508.
doi: 10.1038/s41467-020-17252-y |
[31] | 王硕, 葛秀秀. 植物分枝性状研究进展. 生物技术进展, 2017,7(2):98-101. |
WANG S, GE X X. Progress on plant branch characters. Current Biotechnology, 2017,7(2):98-101. (in Chinese) | |
[32] |
DOMAGALSKA M A, LEYSER O. Signal integration in the control of shoot branching. Nature Reviews: Molecular Cell Biology, 2011,12(4):211-221.
doi: 10.1038/nrm3088 |
[33] | 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019,49(10):1227-1281. |
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Chinese Science: Life Science, 2019,49(10):1227-1281. (in Chinese) | |
[34] |
FERNIE A R. Resolving the role of strigolactone in the early steps of rice axillary bud dormancy. Plant Journal, 2019,97:1003-1005.
doi: 10.1111/tpj.2019.97.issue-6 |
[35] |
LUO L, TAKAHASHI M, KAMEOKA H, QIN, R Y, SHIGA T, KANNO Y, SEO M, ITO M, XU G H, KYOZUKA J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant Journal, 2019,97(6):1006-1021.
doi: 10.1111/tpj.2019.97.issue-6 |
[36] | DUAN J B, YU H, YUAN K, LIAO Z G, MENG X B, JING Y H, LIU G F, CHU J F, LI J Y. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences, 2019,116(28):14319-14324. |
[37] |
WANG L, XU Q, YU H, MA H Y, LI X Q, YANG J, CHU J F, XIE Q, WANG Y H, SMITH S M, LI J Y, XIONG G X, WANG B. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis thaliana. The Plant Cell, 2020,32(7):2251-2270.
doi: 10.1105/tpc.20.00140 |
[38] | HA C V, LEYVA-GONZÁLEZ M A, OSAKABE Y, TRAN U T, NISHIYAMA R, WATANABE Y, TANAKA M, SEKI M, YAMAGUCHI S, DONG N V, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, HERRERA-ESTRELLA L, TRAN L S P. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 2014,111(2):851-856. |
[39] |
AL-BABILI S, BOUWMEESTER H J. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 2015,66:161-186.
doi: 10.1146/annurev-arplant-043014-114759 |
[40] |
WATERS M T, GUTJAHR C, BENNETT T, NELSON D C. Strigolactone signaling and evolution. Annual Review of Plant Biology, 2017,68:291-322.
doi: 10.1146/annurev-arplant-042916-040925 |
[41] |
LI X Y, QIAN Q, FU Z M, WANG Y H, XIONG G S, ZENG D, WANG X Q, LIU X F, TENG S, HIROSHI F, YUAN M, LUO D, HAN B, LI J Y. Control of tillering in rice. Nature, 2003,422(6932):618-621.
doi: 10.1038/nature01518 |
[42] |
CHALFUN-JUNIOR A, FRANKEN J, MES J J, MARSCH- MARTINEZ N, PEREIRA A, ANGENENT G C. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals. Plant Molecular Biology, 2005,57(4):559-575.
doi: 10.1007/s11103-005-0698-4 |
[1] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[2] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[3] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
[4] | 王昊,尹莲,刘洁霞,贾丽丽,丁旭,沈迪,冯凯,徐志胜,熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色[J]. 中国农业科学, 2021, 54(15): 3279-3294. |
[5] | 原新博,程婷婷,惠小涵,陈章玉,王瑞红,柯卫东,郭宏波. 莲藕多酚氧化酶互作蛋白的筛选及验证[J]. 中国农业科学, 2020, 53(18): 3777-3791. |
[6] | 刘佼佼,王学敏,马琳,崔苗苗,曹晓宇,赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. |
[7] | 葛廷,黄雪,谢让金. 柑橘CitPG34的克隆、定位与表达分析[J]. 中国农业科学, 2019, 52(19): 3404-3416. |
[8] | 蒋梦婷,朱宁,龚洪泳,侯应军,余心怡,渠慎春. ‘南通小方柿’赤霉素不敏感基因DkGAI2的克隆与功能分析[J]. 中国农业科学, 2019, 52(19): 3417-3429. |
[9] | 张文颖,王晨,朱旭东,马超,王文然,冷翔鹏,郑婷,房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征[J]. 中国农业科学, 2018, 51(16): 3130-3146. |
[10] | 魏周玲,彭浩然,潘琪,张永至,蒲运丹,吴根土,青玲,孙现超. 核糖体失活蛋白(α-MC)亚细胞定位及对TMV的抑制作用[J]. 中国农业科学, 2017, 50(5): 840-848. |
[11] | 刘维,刘浩,董双玉,古丰玮,陈志强,王加峰,王慧. 水稻叶鞘原生质体转化体系的构建及Pik-H4和AvrPik-H4蛋白的瞬时表达[J]. 中国农业科学, 2017, 50(23): 4575-4584. |
[12] | 李帅,蒋西子,梁伟芳,陈思涵,张享享,左登攀,胡亚会,江彤 . 利用酵母双杂交系统筛选与草莓镶脉病毒P6蛋白互作的森林草莓寄主因子[J]. 中国农业科学, 2017, 50(18): 3519-3528. |
[13] | 彭浩然,蒲运丹,张永至,薛杨,武改霞,青玲,孙现超. ToMV外壳蛋白互作IP-L蛋白的亚细胞定位及表达分析[J]. 中国农业科学, 2017, 50(17): 3344-3351. |
[14] | 贾瑞瑞,周鹏飞,白晓晶,陈善春,许兰珍,彭爱红,雷天刚,姚利晓,陈敏,何永睿,李强. 柑橘响应溃疡病菌转录因子CsBZIP40的克隆及功能分析[J]. 中国农业科学, 2017, 50(13): 2488-2497. |
[15] | 杨丽群,贾乐梅,唐梅,陈毅彪,崔红娟. 家蚕BmYki-1基因鉴定与表达特征[J]. 中国农业科学, 2016, 49(8): 1607-1616. |
|