中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3903-3918.doi: 10.3864/j.issn.0578-1752.2021.18.010
马悦1(),田怡1,苑爱静1,王浩琳1,李永华1,黄婷苗1,黄宁1,李超1,党海燕1,邱炜红1,何刚1,王朝辉1,2(
),石美1(
)
收稿日期:
2020-09-30
接受日期:
2020-12-17
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
马悦,E-mail: 381495288@qq.com。
基金资助:
MA Yue1(),TIAN Yi1,YUAN AiJing1,WANG HaoLin1,LI YongHua1,HUANG TingMiao1,HUANG Ning1,LI Chao1,DANG HaiYan1,QIU WeiHong1,HE Gang1,WANG ZhaoHui1,2(
),SHI Mei1(
)
Received:
2020-09-30
Accepted:
2020-12-17
Published:
2021-09-16
Online:
2021-09-26
摘要:
【目的】分析我国北方麦区不同土壤硝态氮残留梯度下减施氮肥后小麦籽粒产量、蛋白质含量变化,为保证合理减施氮肥,有效降低麦田土壤硝态氮残留提供理论依据。【方法】于2018—2019年在我国北方麦区43个地点进行田间试验,研究不同硝态氮残留情况下氮肥减施对小麦产量、蛋白质含量、产量构成及氮素吸收利用的影响。【结果】与农户施肥相比,监控施肥的氮肥用量减少55 kg·hm-2(26%),产量为5 885 kg·hm-2,比农户施肥增产3.1%,籽粒蛋白质含量为132.4 g·kg-1,与农户施肥相比无显著差异。当1 m土层硝态氮残留量<55 kg·hm-2时,小麦产量最低,为4 252 kg·hm-2,硝态氮残留在55—100 kg·hm-2时,产量达到最高,为7 186 kg·hm-2,硝态氮残留量过高并不能持续提高小麦产量;当土壤硝态氮残留量<100 kg·hm-2时,不施氮肥小麦产量会显著降低,但采用监控施肥技术合理减施氮肥,无论土壤硝态氮残留多少,均不会减产。土壤硝态氮残留>300 kg·hm-2时,小麦籽粒的蛋白质含量达到最高,平均为146.93 g·kg-1;当土壤硝态氮残留量<200 kg·hm-2时,不施氮肥会显著降低籽粒蛋白质含量,但通过监控土壤硝态氮合理减施氮肥,无论硝态氮残留高低,均不会降低籽粒蛋白质含量;硝态氮残留介于55—100 kg·hm-2时,农户与监控施肥处理的小麦籽粒蛋白质含量分别为124.5和123.1 g·kg-1。采用监控施肥技术,小麦氮肥吸收效率(地上部吸氮量/施氮量)与氮肥偏生产力分别为1.36 和45.7 kg·kg-1,较农户施肥显著提高61.5%和57.1%。【结论】综合考虑维持北方麦区小麦较高的产量和蛋白质含量,收获期1 m土层硝态氮残留量应介于55—100 kg·hm-2。基于小麦目标产量、籽粒蛋白质含量和土壤硝态氮监控,确定合理的氮肥用量,对实现小麦氮肥减施、绿色生产有重要意义。
马悦,田怡,苑爱静,王浩琳,李永华,黄婷苗,黄宁,李超,党海燕,邱炜红,何刚,王朝辉,石美. 北方麦区小麦产量与蛋白质含量变化对土壤硝态氮的响应[J]. 中国农业科学, 2021, 54(18): 3903-3918.
MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China[J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
表1
北方麦区各试验地点0—20 cm 土层的基本理化性质、降水、气温和肥料用量"
试验地点 Experimental site | 春/冬小麦 S/W | 年降水 Apre. (mm) | 年均气温 AVT (℃) | 有机质 OM (g·kg-1) | pH | 全氮 TN (g·kg-1) | 矿质氮 MN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | 农户施肥量 FF rates N-P2O5-K2O (kg·hm-2) | 监控施肥量 RF rates N-P2O5-K2O (kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
甘肃天水 Tianshui Gansu | 冬小麦W | 607 | 12.09 | 11.7 | 8.4 | 0.7 | 9.62 | 28.2 | 139.5 | 150-120-0 | 198-30-0 |
甘肃通渭1 Tongwei1 Gansu | 春小麦S | 429 | 9.06 | 10.9 | 8.6 | 0.6 | 3.72 | 11.6 | 134.2 | 121-90-0 | 10-26-0 |
甘肃通渭2 Tongwei2 Gansu | 冬小麦W | 405 | 9.19 | 10.0 | 8.6 | 0.7 | 5.64 | 7.3 | 134.9 | 120-90-0 | 74-31-0 |
甘肃通渭3 Tongwei3 Gansu | 冬小麦W | 405 | 9.19 | 9.0 | 8.9 | 0.6 | 4.90 | 12.0 | 161.0 | 120-90-0 | 89-39-0 |
甘肃通渭4 Tongwei4 Gansu | 冬小麦W | 405 | 9.19 | 10.5 | 8.6 | 0.6 | 9.26 | 8.0 | 121.0 | 150-120-0 | 79-24-0 |
甘肃武威 Wuwei Gansu | 春小麦S | 212* | 7.95 | 13.9 | 8.6 | 0.8 | 23.23 | 27.0 | 145.6 | 267-242-0 | 183-30-0 |
甘肃张掖 Zhangye Gansu | 春小麦S | 172* | 8.75 | 17.4 | 9.2 | 0.9 | 19.28 | 38.2 | 97.6 | 300-200-0 | 200-120-75 |
甘肃庄浪 Zhuanglang Gansu | 冬小麦W | 568 | 8.83 | 14.5 | 8.4 | 0.9 | 31.62 | 26.4 | 135.7 | 180-120-0 | 120-90-0 |
黑龙江黑河 Heihe Heilongjiang | 春小麦S | 689 | 1.67 | 38.2 | 5.5 | 2.1 | 18.54 | 33.9 | 166.5 | 80-75-38 | 73-73-20 |
黑龙江克山 Keshan Heilongjiang | 春小麦S | 780 | 3.78 | 31.2 | 6.6 | 1.6 | 14.08 | 68.6 | 296.9 | 90-75-45 | 75-30-45 |
内蒙古临河 Linhe Neimenggu | 春小麦S | 90* | 9.40 | 15.1 | 8.6 | 0.8 | 23.98 | 70.3 | 206.9 | 302-207-0 | 177-62-60 |
内蒙古五原 Wuyuan Neimenggu | 春小麦S | 105* | 7.95 | 7.4 | 8.4 | 0.4 | 57.64 | 4.4 | 59.8 | 344-173-0 | 203-72-60 |
内蒙古海拉尔 Hailaer Neimenggu | 春小麦S | 295 | -0.13 | 31.9 | 8.3 | 1.6 | 18.54 | 47.1 | 208.1 | 90-60-39 | 120-68-14 |
宁夏贺兰 Helan Ningxia | 春小麦S | 148* | 9.98 | 13.3 | 8.4 | 0.6 | 11.86 | 20.7 | 129.7 | 300-120-75 | 218-120-75 |
宁夏永宁1 Yongning1 Ningxia | 春小麦S | 226* | 11.33 | 12.4 | 8.6 | 0.7 | 23.36 | 18.0 | 144.6 | 313-104-0 | 278-138-90 |
宁夏永宁2 Yongning2 Ningxia | 春小麦S | 177* | 12.37 | 14.6 | 8.6 | 0.8 | 16.94 | 29.0 | 135.9 | 240-120-75 | 225-113-45 |
宁夏永宁3 Yongning3 Ningxia | 春小麦S | 226* | 11.33 | 12.8 | 8.4 | 0.7 | 17.31 | 21.2 | 95.4 | 300-150-75 | 270-90-90 |
青海湟中 Huangzhong Qinghai | 春小麦S | 465 | 4.80 | 18.1 | 8.6 | 1.2 | 14.77 | 28.8 | 103.2 | 90-93-0 | 198-30-50 |
山西洪洞1 Hongtong1 Shanxi | 冬小麦W | 328 | 16.08 | 11.3 | 7.9 | 0.7 | 112.03 | 4.8 | 158.9 | 150-60-0 | 104-42-0 |
山西洪洞2 Hongtong2 Shanxi | 冬小麦W | 237* | 13.79 | 18.7 | 8.4 | 1.0 | 16.58 | 8.8 | 129.0 | 268-135-90 | 188-56-31 |
山西临汾 Linfen Shanxi | 冬小麦W | 343* | 15.24 | 19.0 | 8.5 | 0.8 | 13.59 | 11.7 | 160.0 | 266-120-66 | 179-111-30 |
山西闻喜1 Wenxi1 Shanxi | 冬小麦W | 289 | 16.75 | 14.0 | 8.2 | 0.7 | 12.59 | 5.6 | 121.3 | 180-60-60 | 142-60-34 |
山西闻喜2 Wenxi2 Shanxi | 冬小麦W | 289* | 16.75 | 18.1 | 8.5 | 1.0 | 20.41 | 12.3 | 131.3 | 240-150-150 | 172-82-0 |
试验地点 Experimental site | 春/冬小麦 S/W | 年降水 Apre. (mm) | 年均气温 AVT (℃) | 有机质 OM (g·kg-1) | pH | 全氮 TN (g·kg-1) | 矿质氮 MN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) | 农户施肥量 FF rates N- P2O5-K2O (kg·hm-2) | 监控施肥量 RF rates N- P2O5-K2O (kg·hm-2) |
山西永济 Yongji Shanxi | 冬小麦W | 465* | 14.82 | 14.8 | 8.5 | 0.8 | 14.23 | 10.1 | 145.5 | 268-180-90 | 251-75-0 |
陕西彬县 Binxian Shaanxi | 冬小麦W | 366 | 10.01 | 12.3 | 8.3 | 0.3 | 33.92 | 16.1 | 181.2 | 234-129-44 | 77-75-30 |
陕西大荔 Dali Shaanxi | 冬小麦W | 381 | 6.57 | 10.7 | 8.8 | 0.3 | 117.77 | 14.8 | 201.7 | 255-217-21 | 147-21-30 |
陕西合阳 Heyang Shaanxi | 冬小麦W | 347 | 6.57 | 12.6 | 8.2 | 0.7 | 35.60 | 10.5 | 237.7 | 135-162-18 | 111-79-30 |
陕西蒲城 Pucheng Shaanxi | 冬小麦W | 345 | 6.57 | 18.0 | 8.2 | 0.7 | 31.49 | 9.4 | 169.5 | 148-93-32 | 83-99-30 |
陕西岐山1 Qishan1 Shaanxi | 冬小麦W | 288 | 12.44 | 12.1 | 7.8 | 0.6 | 71.77 | 12.2 | 122.2 | 203-113-35 | 30-92-30 |
陕西岐山2 Qishan2 Shaanxi | 冬小麦W | 288* | 12.44 | 18.2 | 8.5 | 1.1 | 7.23 | 7.7 | 119.8 | 180-144-35 | 150-90-0 |
陕西乾县 Qianxian Shaanxi | 冬小麦W | 413 | 13.35 | 10.9 | 8.4 | 0.4 | 74.68 | 14.2 | 98.5 | 214-244-6 | 105-58-30 |
陕西武功1 Wugong1 Shaanxi | 冬小麦W | 561* | 13.35 | 19.2 | 8.3 | 1.2 | 19.66 | 23.0 | 257.6 | 255-180-30 | 206-89-5 |
陕西武功2 Wugong2 Shaanxi | 冬小麦W | 561* | 13.35 | 17.2 | 8.3 | 1.1 | 18.23 | 19.4 | 128.2 | 255-180-30 | 225-105-45 |
陕西永寿1 Yongshou1 Shaanxi | 冬小麦W | 370 | 13.35 | 12.0 | 8.1 | 0.7 | 92.00 | 9.8 | 178.0 | 189-132-28 | 98-63-30 |
陕西永寿2 Yongshou2 Shaanxi | 冬小麦W | 370 | 13.35 | 10.5 | 8.2 | 0.5 | 47.38 | 9.6 | 139.2 | 199-129-20 | 39-91-30 |
陕西永寿3 Yongshou3 Shaanxi | 冬小麦W | 370 | 13.35 | 13.5 | 8.3 | 0.8 | 27.28 | 15.6 | 80.7 | 138-105-0 | 126-51-30 |
陕西永寿4 Yongshou4 Shaanxi | 冬小麦W | 370 | 13.35 | 11.1 | 8.4 | 0.6 | 49.27 | 13.4 | 116.5 | 193-117-20 | 64-41-30 |
新疆泽普1 Zepu1 Xinjiang | 冬小麦W | 92* | 12.31 | 14.4 | 8.6 | 0.7 | 12.92 | 29.2 | 126.4 | 296-173-0 | 295-68-68 |
新疆木垒 Mulei Xinjiang | 春小麦W | 52* | 7.33 | 9.6 | 8.3 | 0.7 | 17.50 | 7.0 | 198.1 | 240-105-38 | 224-81-0 |
新疆奇台 Qitai Xinjiang | 冬小麦W | 528* | 2.08 | 12.9 | 8.5 | 0.8 | 24.18 | 20.9 | 462.1 | 315-180-20 | 240-120-20 |
新疆塔城 Tacheng Xinjiang | 冬小麦W | 255* | 6.15 | 31.1 | 8.3 | 1.8 | 28.24 | 47.8 | 285.0 | 240-105-38 | 192-50-0 |
新疆石河子 Shihezi Xinjiang | 春小麦S | 231* | 8.43 | 15.5 | 8.3 | 0.9 | 32.33 | 36.2 | 391.2 | 300-133-0 | 216-30-0 |
新疆泽普2 Zepu2 Xinjiang | 冬小麦W | 92* | 12.31 | 9.7 | 8.7 | 0.6 | 12.03 | 22.5 | 95.9 | 295-173-0 | 282-138-0 |
表2
北方麦区1 m土层不同土壤硝态氮残留下地上部生物量和收获指数"
硝态氮残留 Nitrate N residue (kg·hm-2) | 地上部生物量Aboveground biomass (kg·hm-2) | 收获指数Harvest index (%) | ||||||
---|---|---|---|---|---|---|---|---|
农户施肥 FF | 监控施肥 RF | 监控无氮 RF-N | 平均 Average | 农户施肥 FF | 监控施肥 RF | 监控无氮 RF-N | 平均 Average | |
<55 | 10397 ab | 11042 a | 8223 b | 9887 C | 42.6 a | 42.1 a | 42.2 a | 42.3 B |
55-100 | 15244 a | 15388 a | 14230 b | 14954 A | 48.5 a | 49.8 a | 48.4 a | 48.9 A |
100-200 | 11470 b | 11924 a | 11612 ab | 11669 BC | 42.2 a | 41.3 a | 41.1 a | 41.6 B |
200-300 | 12539 a | 14109 a | 13578 a | 13409 AB | 45.9 a | 44.9 a | 44.6 a | 45.1 AB |
>300 | 14388 a | 14722 a | 12161 a | 13757 AB | 44.4 a | 45.2 a | 44.5 a | 44.7 B |
平均Average | 12715 a | 13257 a | 12206 b | 44.5 a | 44.4 a | 43.8 a |
表3
北方麦区1 m土层不同土壤硝态氮残留下产量三要素"
硝态氮残留 Nitrate N residue (kg·hm-2) | 穗数Spike number (×104 ·hm-2) | 穗粒数Grain per spike | 千粒重1000 grain weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | 农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | 农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | |
<55 | 404 a | 452 a | 331 a | 396 C | 27 a | 30 a | 34 a | 30 AB | 42.8 a | 40.1 a | 36.0 a | 39.6 A |
55-100 | 534 a | 543 a | 553 a | 543 A | 34 a | 34 a | 31 b | 33 A | 42.2 a | 42.4 a | 42.9 a | 42.5 A |
100-200 | 389 ab | 415 a | 387 b | 397 C | 30 a | 28 ab | 28 b | 29 AB | 42.1 a | 42.2 a | 44.2 a | 42.8 A |
200-300 | 415 a | 468 a | 447 a | 443 BC | 32 a | 33 a | 31 a | 32 AB | 45.9 a | 42.6 a | 44.1 a | 44.2 A |
>300 | 481 a | 559 a | 452 a | 497 AB | 29 a | 28 a | 26 a | 28 B | 42.7 a | 41.3 a | 41.2 a | 41.7 A |
平均Average | 439 ab | 473 a | 435 b | 31 a | 30 a | 29 b | 42.8 a | 42.0 b | 42.7 ab |
表4
北方麦区1 m土层不同土壤硝态氮残留下地上部吸氮量、籽粒吸氮量、氮收获指数"
硝态氮残留 Nitrate N residue (kg·hm-2) | 地上部吸氮量 N uptake in aboveground part (kg·hm-2) | 籽粒吸氮量 Grain N uptake (kg·hm-2) | 氮收获指数 N harvest index (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | 农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | 农户施肥FF | 监控施肥RF | 监控无氮RF-N | 平均Average | |
<55 | 124 a | 123 a | 81 b | 109 C | 105 a | 103 a | 68 b | 92 C | 84.0 a | 85.5 a | 83.7 a | 83.4 A |
55-100 | 192 a | 194 a | 164 b | 183 A | 157 a | 160 a | 137 b | 151 A | 83.1 a | 83.1 a | 83.7 a | 83.1 A |
100-200 | 150 a | 148 a | 134 b | 144 BC | 113 a | 112 a | 103 b | 110 BC | 76.2 a | 75.9 a | 77.4 a | 76.5 A |
200-300 | 166 a | 188 a | 160 a | 171 AB | 132 a | 146 a | 128 a | 135 AB | 79.4 a | 77.0 a | 79.8 a | 78.7 A |
>300 | 198 a | 203 a | 163 a | 188 A | 160 a | 159 a | 129 a | 149 A | 81.7 a | 79.5 a | 80.1 a | 80.5 A |
平均Average | 164 a | 168 a | 142 b | 131 a | 133 a | 114 b | 79.7 a | 78.9 a | 80.2 a |
[15] | BAI H, ZHANG X, CHU J P, YU H T, YANG H Y, XU C C, DAI X L. Nitrogen fertilizer level: effects on yield and nitrogen utilization of strong gluten wheat. Chinese Agricultural Science Bulletin, 2020, 36(4): 7-14. (in Chinese) |
[16] | 徐明杰, 董娴娴, 刘会玲, 张丽娟, 巨晓棠. 不同管理方式对小麦氮素吸收、分配及去向的影响. 植物营养与肥料学报, 2014, 20(5): 1084-1093. |
[1] | 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2719-2734. |
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2719-2734. (in Chinese) | |
[16] | XU M J, DONG X X, LIU H L, ZHANG L J, JU X T. Effects of different management patterns on uptake,distribution and fate of nitrogen in wheat. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1084-1093. (in Chinese) |
[17] | 刘学军, 巨晓棠, 张福锁. 减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响. 应用生态学报, 2004, 15(3): 458-462. |
[2] |
JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, 2009, 106(9): 3041-3046.
doi: 10.1073/pnas.0813417106 |
[3] | KAHRL F, LI Y J, SU Y F, TENNIGKEIT T, WILKES A, XU J C. Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science & Policy, 2010, 13(8): 688-694. |
[17] | LIU X J, JU X T, ZHANG F S. Effect of reduced N application on N utilization and balance in winter wheat- summer maize cropping system. Chinese Hinese Journal of Applied Ecology, 2004, 15(3): 458-462. (in Chinese) |
[18] | MA G, LIU W X, LI S S, ZHANG P P, WANG C Y, LU H F, WANG L F, XIE Y X, MA D Y, KANG G Z. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain. Frontiers in Plant Science, 2019, 10. |
[4] |
ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMANS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59.
doi: 10.1038/nature15743 |
[5] | 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国农业出版社, 2019. |
[19] | XUE C, AUF’M ERLEY G S, ROSSMANN A, SCHUSTER R, KOEHLER P, MUHLING K H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Frontiers in Plant Science, 2016, 7(8): 1-11. |
[20] | 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965. |
[5] | National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Agriculture Press, 2019. (in Chinese) |
[6] | 陈伟, 孙建好, 赵建华. 甘肃省小麦施肥现状分析与评价. 干旱地区农业研究, 2013, 31(2): 23-27. |
CHEN W, SUN J H, ZHAO J H. Analysis and evaluation of fertilization situation for wheat in Gansu province. Agricultural Research in the Arid Areas, 2013, 31(2): 23-27. (in Chinese) | |
[7] | 李茹, 单燕, 李水利, 林文, 刘芬, 同延安. 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015, 35(1): 105-110. |
LI R, SHAN Y, LI S L, LIN W, LIU F, TONG Y A. Analysis of soil fertility and fertilization of wheat yield in Shaanxi. Journal of Triticeae Crops, 2015, 35(1): 105-110. (in Chinese) | |
[8] | 孙建好, 李伟绮, 赵建华. 高台县小麦及玉米施肥现状调查与评价. 甘肃农业科技, 2019(6): 51-56. |
SUN J H, LI W Q, ZHAO J H. Investigation and evaluation of fertilization situation of wheat and corn in Gaotai county. Gansu Agricultural Science and Technology, 2019(6): 51-56. (in Chinese) | |
[9] | 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. |
[20] | DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. (in Chinese) |
[21] | 张礼军, 张耀辉, 鲁清林, 白玉龙, 周刚, 汪恒兴, 张文涛, 白斌, 周洁, 何春雨. 耕作方式和氮肥水平对旱地冬小麦籽粒品质的影响. 核农学报, 2017, 31(8): 1567-1575. |
ZHANG L J, ZHANG Y H, LU Q L, BAI Y L, ZHOU G, WANG H X, ZHANG W T, BAI B, ZHOU J, HE C Y. Effect of tillage model and nitrogen rate on grain quality of dryland winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1567-1575. (in Chinese) | |
[22] |
LUO L C, WANG Z H, HUANG M, HUI X L, WANG S, ZHAO Y, HE H X, ZHANG X, DIAO C P, CAO H B, MA Q X, LIU J S. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 2018, 218:69-77.
doi: 10.1016/j.fcr.2018.01.005 |
[23] |
BICEGO B, SAPKOTA A, TORRION J. Differential nitrogen and water impacts on yield and quality of wheat classes. Agronomy Journal, 2019, 111(6): 2792-2803.
doi: 10.2134/agronj2019.04.0283 |
[24] | 冯美臣, 陈鹏, 杨武德, 王超. 播期和施氮量对冬小麦氮代谢及子粒蛋白质含量的影响. 作物杂志, 2016(3): 104-109. |
FENG M C, CHEN P, YANG W D, WANG C. Effects of sowing date and nitrogen fertilizer rate on nitrogen metabolism and kernel protein content of winter wheat. Crops, 2016(3): 104-109. (in Chinese) | |
[25] | 中华人民共和国农业农村部. 农业农村部办公厅关于推介发布2018年农业主推技术的通知. 北京: 农办科〔2018〕12号, 2018年5月4日发布. |
The Ministry of Agriculture and Rural Affairs of the People's Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on the promotion and release of the main agricultural technologies in 2018. Beijing: Agriculture Office [2018] No. 12, issued on May 4, 2018. (in Chinese) | |
[26] | 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838. |
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei Dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. (in Chinese) | |
[27] |
MALHI S S, LEMKE R, WANG Z H, CHHABRA B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183.
doi: 10.1016/j.still.2005.09.001 |
[9] | CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. (in Chinese) |
[10] | 赖波, 汤明尧, 柴仲平, 陈波浪, 李青军, 董巨河, 王飞, 田长彦. 新疆农田化肥施用现状调查与评价. 干旱区研究, 2014, 31(6): 1024-1030. |
LAI B, TANG M Y, CHAI Z P, CHEN B L, LI Q J, DONG J H, WANG F, TIAN C Y. Investigation and evaluation of the chemical fertilizer application situation of farmland in Xinjiang. Arid Zone Research, 2014, 31(6): 1024-1030. (in Chinese) | |
[11] | 刘鑫, 郜翻身, 高娃, 刘宇杰, 段丽红, 王霞. 巴彦淖尔市主要农作物施肥情况调查及存在问题分析. 刘鑫. 内蒙古农业大学学报(自然科学版), 2018, 39(3): 15-24. |
[28] | 袁久坤, 周英. 利用取土钻改进环刀法准确测定土壤容重和孔隙度. 中国园艺文摘, 2014(3): 25-26. |
YUAN J K, ZHOU Y. Chinese Horticulture Abstracts, 2014(3): 25-26. (in Chinese) | |
[29] | 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93. |
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. (in Chinese) | |
[30] | 杨月欣, 王光亚, 潘兴昌. 中国食物成分表. 北京: 北京医科大学、中国协和医科大学联合出版社, 2002: 7. |
YANG Y X, WANG G Y, PAN X C. China Food Composition. Beijing: Beijing Medical University and China Union Medical University Press, 2002: 7. (in Chinese) | |
[31] | SAMIRA FATHOLAHI, PARVIZ EHSANZADEH, HASSAN KARIMMOJENI. Ancient and improved wheats are discrepant in nitrogen uptake, remobilization, and use efficiency yet comparable in nitrogen assimilating enzymes capabilities. Field Crops Research, 2020, 249:1-13. |
[32] | 曹雯梅, 刘松涛, 郑贝贝, 路凤银, 杨青华. 小麦高产及超高产优化管理模式对氮素吸收分配、土壤硝态氮累积及产量的影响. 核农学报, 2013, 27(10): 1567-1574. |
CAO W M, LIU S T, ZHENG B B, LU F Y, YANG Q H. Effects of cultivation management modes of the high-yield and super-high- yield on nitrogen uptake and distribution in wheat and accumulation of soil NO3-N. Journal of Nuclear Agricultural Sciences, 2013, 27(10): 1567-1574. (in Chinese) | |
[33] | 江华波, 王盛锋, 杨峰, 张中华. 不同浓度硝态氮供应下小麦生长、硝态氮累积及根系钙信号特征. 植物科学学报, 2015, 33(3): 362-368. |
JIANG H B, WANG S F, YANG F, ZHANG Z H. Plant growth, nitrate content and Ca signaling in wheat (Triticum aestivum L.) roots under different nitrate supply. Plant Science Journal, 2015, 33(3): 362-368. (in Chinese) | |
[34] | 王琦, 李锋瑞. 灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响. 生态学报, 2008, 28(5): 2148-2159. |
WANG Q, LI F R. Effects of different irrigation and N supply levels on NO3 --N accumulation and N use efficiency on a recently reclaime sandy farmland in Heihe River basin. Acta Ecologica Sinica, 2008, 28(5): 2148-2159. (in Chinese) | |
[35] | 吉艳芝, 冯万忠, 郝晓然, 彭亚静, 韩鹏辉, 马峙英, 张丽娟. 不同施肥模式对华北平原小麦-玉米轮作体系产量及土壤硝态氮的影响. 生态环境学报, 2014(11): 1725-1731. |
JI Y Z, FENG W Z, HAO X R, PENG Y J, HAN P H, MA Z Y, ZHANG L J. Effects of different fertilization pattern on the yield of the rotation system of wheat and maize and soil nitrate accumulation in North China Plain. Ecology and Environment Sciences, 2014(11): 1725-1731. (in Chinese) | |
[36] | 杨晓卡, 米慧玲, 高韩钰, 辛思颖, 马文奇, 魏静. 不同栽培模式对冬小麦-夏玉米轮作系统产量、氮素累积和平衡的影响. 应用生态学报, 2016, 27(6): 1935-1941. |
YANG X K, MI H L, GAO H Y, XIN S Y, MA W Q, WEI J. Effects of different cultivation patterns on yield, nitrate accumulation and nitrogen balance in winter wheat and summer maize rotation system. Chinese Journal of Applied Ecology, 2016, 27(6): 1935-1941. (in Chinese) | |
[37] | 章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1387-1396. |
ZHANG Z L, LIU J S, WANG Z H, ZHAO H B, YANG N, YANG R, CAO H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance. Journal of Plant Nutrition and Fertilizer, 2012, 18(6): 1387-1396. (in Chinese) | |
[38] | VAN DER PLOEG R R, RINGE H, MACHULLA G, HERMSMEYER D. Postwar nitrogen use efficiency in West German agriculture and groundwater quality. Journal of Environmental Quality, 1997, 26(5): 1203-1212. |
[11] | LIU X, GAO F S, GAO W, LIU Y J, DUAN L H, WANG X. Investigation ang analysis on the existing problems of main crop fertilization situation in bayannur city. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2018, 39(3): 15-24. (in Chinese) |
[12] |
CUI Z L, ZHANG F S, CHEN X P, MIAO Y X, LI J L, SHI L W, XU J F, YE Y L, LIU C S, YANG Z P, ZHANG Q, HUANG S M, BAO D J. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 2008, 105:48-55.
doi: 10.1016/j.fcr.2007.07.008 |
[13] | 马清霞. 基于长期定位试验的旱地小麦氮磷管理优化[D]. 杨凌: 西北农林科技大学, 2018. |
MA Q X. Optimization of nitrogen and phosphorus management for dryland wheat based on long term location-field experiment[D]. Yangling: Northwest Agriculture and Forestry University, 2018. (in Chinese) | |
[14] | 刘艳妮, 马臣, 于昕阳, 路梁, 翟丙年, 王朝辉. 基于不同降水年型渭北旱塬小麦-土壤系统氮素表观平衡的氮肥用量研究. 植物营养与肥料学报, 2018, 24(3): 569-578. |
LIU Y N, MA C, YU X Y, LU L, ZHAI B N, WANG Z H. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years. Journal of Plant Nutrition and Fertilizer, 2018, 24(3): 569-578. (in Chinese) | |
[15] | 柏慧, 张秀, 初金鹏, 于海涛, 杨宏业, 徐晨晨, 代兴龙. 氮肥水平对强筋小麦产量和氮素利用的影响. 中国农学通报, 2020, 36(4): 7-14. |
[39] | HOFMAN G. Nutrient management legislation in European countries. Numalec Report, 1999: Concerted action, Fair6-CT98-4215. |
[40] |
CUI Z L, CHEN X P, ZHANG F S. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 2013, 105(5): 1411-1416.
doi: 10.2134/agronj2012.0398 |
[41] | 巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296. |
JU X T, GU B J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese). | |
[42] | 崔振岭, 石立委, 徐久飞, 李俊良, 张福锁, 陈新平. 氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究. 应用生态学报, 2005, 16(11): 2071-2075. |
CUI Z L, SHI L W, XU J F, LI J L, ZHANG F S, CHEN X P. Effects of N fertilization on winter wheat grain yield and its crude protein content and apparent N losses. Chinese Journal of Applied Ecology, 2005, 16(11): 2071-2075. (in Chinese) | |
[43] | 姚金保, 马鸿翔, 张平平, 张鹏, 杨学明, 周淼平. 施氮量和种植密度对弱筋小麦宁麦18籽粒产量和蛋白质含量的影响. 西南农业学报, 2017, 30(7): 1507-1510. |
YAO J B, MA H X, ZHANG P P, ZHANG P, YANG X M, ZHOU M P. Effect of nitrogen application rate and plant density on grain yield and protein contents of weak gluten wheat cultivar Ningmai 18. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1507-1510. (in Chinese) | |
[44] | 吕敏娟, 陈帅, 辛思颖, 佟丙辛, 王释强, 薛澄, 马文奇, 魏静. 施氮量对冬小麦产量、品质和土壤氮素平衡的影响. 河北农业大学学报, 2019, 42(4): 9-15. |
LÜ M J, CHEN S, XIN S Y, TONG B X, WANG S Q, XUE C, MA W Q, WEI J. Effects of nitrogen application rate on yield, quality and soil nitrogen balance of winter wheat. Journal of Hebei Agricultural University, 2019, 42(4): 9-15. (in Chinese) | |
[45] |
熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014, 38(7): 767-775.
doi: 10.3724/SP.J.1258.2014.00072 |
XIONG S P, WANG J, WANG X C, DING S J, MA X M. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region. Chinese Journal of Plant Ecology, 2014, 38(7): 767-775. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00072 |
|
[46] | 王茂莹, 贺明荣, 李玉, 董元杰. 施氮量对不同小麦品种产量及氮素吸收利用的影响. 水土保持学报, 2020, 34(4): 241-248. |
WANG M Y, HE M R, LI Y, DONG Y J. Effects of nitrogen application rate on yield and nitrogen uptake and utilization of different wheat varieties. Journal of Soil and Water Conservation, 2020, 34(4): 241-248. (in Chinese) | |
[47] | 刘凯, 刘冰, 谢英荷, 李廷亮, 张奇茹, 李顺, 窦露, 柳玉凤, 纪美娟, 姜丽伟. 减氮覆膜对黄土旱塬小麦产量构成及水肥利用效率的影响. 水土保持学报, 2020, 34(3): 198-206. |
LIU K, LIU B, XIE Y H, LI T L, ZHANG Q R, LI S, DOU L, LIU Y F, JI M J, JIANG L W. Effects of nitrogen reduction and film mulching on wheat yield composition and utilization efficiency of water and fertilizer in the Loess Plateau. Journal of Soil and Water Conservation, 2020, 34(3): 198-206. (in Chinese) | |
[48] | 闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪. 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019, 39(4): 478-486. |
WEN L, ZHANG F C, ZOU H Y, LU J S, GUO J J, XUE Z Q. Effect of water defict and nitrogen rate on the growth, water and nitrogen use of spring wheat. Journal of Triticeae Crops, 2019, 39(4): 478-486. (in Chinese) | |
[49] | 张福锁, 马文奇, 陈新平. 养分资源综合管理理论与技术概论. 北京: 中国农业大学出版社, 2006: 40-47. |
ZHANG F S, MA W Q, CHEN X P. Introduction to Comprehensive Management Theory and Technology of Nutrient Resources. Beijing: China Agricultural University Press, 2006: 40-47. (in Chinese) | |
[50] | 张福锁. 协调作物高产与环境保护的养分资源综合管理技术研究与应用. 北京: 中国农业大学出版社, 2008. |
ZHANG F S. Research and application of integrated nutrient resource management technology for coordinating high crop yield and environmental protection. Beijing: China Agricultural University Press, 2008. (in Chinese) | |
[51] | ZHANG F S, SHEN J B, JING J Y, LI L, CHEN X P. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone, 2010: 52-54. |
[52] | CHEN X P, CUI Z L, VITOUSEK P M, CASSMANC K G, MATSOND P A, BAI J S, MENG Q F, HOU P, YUE S C, ROMHELDE V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences, 2011, 108(16): 6399-6404. |
[53] | 何萍, 金继运, PAMPOLINO F M, JOHNSTON M A. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012, 18(2): 499-505. |
HE P, JIN J Y, PAMPOLINO F M, JOHNSTON M A. Approach and decision support system based on crop yield response and agronomic efficiency. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 499-505. (in Chinese) | |
[54] | ZHANG F S, CUI Z L, CHEN X P, JU X Y, SHEN J B, CHEN Q, LIU X J, ZHANG W F, MI G H, FANG M S, JIANG R F. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116:1-40. |
[55] | 叶优良, 黄玉芳, 刘春生, 曲日涛, 宋海燕, 崔振岭. 氮素实时管理对冬小麦产量和氮素利用的影响. 作物学报, 2010, 36(9): 1578-1584. |
YE Y L, HUANG Y F, LIU C S, QU R T, SONG H Y, CUI Z L. Effect of in-season nitrogen management on grain yield and nitrogen use efficiency in wheat. Acta Agronomica Sinica, 2010, 36(9): 1578-1584. (in Chinese) | |
[56] |
CAO H B, WANG Z H, HE G, DAI J, HUANG M, WANG S, LUO L C, SADRASC V O, HOOGMOEDC M, MALHID S S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Research, 2017, 209:88-95.
doi: 10.1016/j.fcr.2017.04.014 |
[57] |
HUANG M, WANG Z H, LUO L C, WANG S, HUI X L, HE G, CAO H B, MA X L, HUANG T M, ZHAO Y, DIAO C P, ZHENG X F, ZHAO H B, LIU J S, MALHI S S. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Research, 2017, 212:153-164.
doi: 10.1016/j.fcr.2017.07.011 |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 彭海霞, 卡得艳, 张天星, 周梦蝶, 吴林楠, 辛转霞, 赵惠贤, 马猛. 过量表达小麦TaCYP78A5增加花器官的大小[J]. 中国农业科学, 2023, 56(9): 1633-1645. |
[3] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
[4] | 张旭, 韩金妤, 李晨晨, 张丹丹, 吴启蒙, 刘胜杰, 焦韩轩, 黄硕, 李春莲, 王长发, 曾庆东, 康振生, 韩德俊, 吴建辉. 结合基因关联和转录组分析鉴定小麦成株期抗条锈病位点YrZ501-2BL的候选基因[J]. 中国农业科学, 2023, 56(8): 1429-1443. |
[5] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[6] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[7] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[8] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[9] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[10] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[11] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[12] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[13] | 王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. |
[14] | 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘[J]. 中国农业科学, 2023, 56(5): 801-820. |
[15] | 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应[J]. 中国农业科学, 2023, 56(5): 838-849. |
|