中国农业科学 ›› 2019, Vol. 52 ›› Issue (20): 3520-3532.doi: 10.3864/j.issn.0578-1752.2019.20.003
收稿日期:
2019-04-25
接受日期:
2019-05-20
出版日期:
2019-10-16
发布日期:
2019-10-28
通讯作者:
张艳欣
作者简介:
师立松,Tel:027-86832099;E-mail:shilisongning@163.com。
基金资助:
LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG()
Received:
2019-04-25
Accepted:
2019-05-20
Online:
2019-10-16
Published:
2019-10-28
Contact:
YanXin ZHANG
摘要:
【目的】 芝麻蒴果成熟易开裂,造成产量损失,是影响芝麻机械化收获的重要因素。建立一种简便易行、准确可靠、重复性好的芝麻抗裂蒴性鉴定方法,有利于发掘抗裂蒴种质和选育抗裂蒴品种,推动芝麻机械化生产进程。【方法】 芝麻进入成熟期2周以后,取主茎中部蒴果进行抗裂蒴性鉴定。利用5份具有不同抗裂蒴性的代表性材料,通过比较蒴果样品烘干前后裂口宽与开裂角度C1的差异,确定样品处理方式;通过比较主茎各节位蒴果的裂口宽和开裂角度C1变异情况,选择最佳取样部位。以308份核心种质为材料,测量计算蒴果长、蒴果宽、蒴果厚、裂口宽、裂口深、果皮重、裂口深/蒴果长、果皮重/蒴果长、开裂角度C1和C2等10项指标,通过相关性分析、主成分分析、隶属函数、线性回归等统计学分析,筛选抗裂蒴性评价的最佳指标;根据不同抗裂蒴性核心种质的裂口宽变异分布情况,确定抗裂蒴性等级划分标准。【结果】 蒴果样品经过烘干处理,有助于消除误差,可提高鉴定准确性;植株主茎中部5节位蒴果的裂口宽和开裂角度C1在同一材料不同单株间无显著差异,为最佳取样部位;建立308份核心种质的抗裂蒴性综合评价值与单项指标的最优回归方程,即D=﹣0.12+0.33X2+3.21X10,表明裂口宽和果皮重/蒴果长对抗裂蒴性有显著影响,且裂口宽与蒴果开裂角度C1呈极显著正相关(相关系数0.8049),因此,裂口宽可以作为芝麻抗裂蒴性鉴定评价的指标;确定的芝麻抗裂蒴性等级划分标准为:高抗(裂口宽≤0.7 cm),抗(0.7 cm<裂口宽≤0.9 cm),中间型(0.9 cm<裂口宽≤1.1 cm),裂(1.1 cm<裂口宽≤1.5 cm),易裂(裂口宽>1.5 cm)。【结论】 当芝麻进入成熟期2周后,选取主茎中部5节位的中位蒴果,烘干处理后测量蒴果的裂口宽,能够精准评价芝麻的抗裂蒴性。该方法简便易行,不受环境影响,可控性强,重复性好,结果可靠,能较为准确地反映芝麻的抗裂蒴性,可用于芝麻种质抗裂蒴性高通量鉴定。利用该方法对308份核心种质进行抗裂蒴性评价,并从中筛选出11份高抗裂蒴种质。
师立松,高媛,黎冬华,杨文娟,周瑢,张秀荣,张艳欣. 芝麻抗裂蒴性鉴定方法研究及核心种质抗裂蒴性评价[J]. 中国农业科学, 2019, 52(20): 3520-3532.
LiSong SHI,Yuan GAO,DongHua LI,WenJuan YANG,Rong ZHOU,XiuRong ZHANG,YanXin ZHANG. Study on the Method for Identification Sesame Capsule Dehiscence Resistance and Evaluation of Capsule Dehiscence Resistance of the Core Collection[J]. Scientia Agricultura Sinica, 2019, 52(20): 3520-3532.
表1
同一材料的单株间裂口宽的统计分析"
取样部位Sampling position | 单株Single plant | LS78 | LS83 | LS85 | LS89 | LS90 |
---|---|---|---|---|---|---|
全部节位平均值 Average value of all nodes | 1 | 0.793b | 0.985b | 1.198a | 1.860a | 1.827a |
2 | 0.905a | 1.158a | 0.944b | 1.681a | 1.859a | |
3 | 0.848ab | 0.990b | 0.941b | 1.686a | 1.895a | |
4 | 0.873ab | 1.028b | 0.960b | 1.865a | 1.946a | |
中部5节位平均值 Average value of the middle 5 nodes | 1 | 0.898a | 1.113a | 1.127a | 1.875a | 1.897a |
2 | 0.887a | 1.171a | 1.084a | 1.748a | 1.953a | |
3 | 0.883a | 1.098a | 1.136a | 1.925a | 1.813a | |
4 | 0.832a | 1.059a | 1.070a | 1.751a | 2.065a | |
去除基部5节和顶部5节后其他节位平均值 Average value of the other nodes after removing the base 5 nodes and the top 5 nodes | 1 | 0.886a | 1.070a | 1.193a | 1.886a | 1.929a |
2 | 0.929a | 1.164a | 1.043b | 1.730a | 1.977a | |
3 | 0.910a | 0.995a | 1.024b | 1.744a | 1.968a | |
4 | 0.889a | 1.095a | 1.012b | 1.845a | 1.942a |
表2
同一材料的单株间蒴果开裂角度C1的统计分析"
取样部位Sampling position | 单株Single plant | LS78 | LS83 | LS85 | LS89 | LS90 |
---|---|---|---|---|---|---|
全部节位平均值 Average value of all nodes | 1 | 18.359b | 18.876b | 24.569a | 31.512a | 30.521b |
2 | 21.766a | 23.300a | 19.403b | 30.737a | 31.779ab | |
3 | 21.045a | 18.702b | 19.030b | 30.387a | 33.235ab | |
4 | 21.935a | 20.739b | 18.555b | 32.998a | 35.056a | |
中部5节位平均值 Average value of the middle 5 nodes | 1 | 20.413a | 20.889a | 22.995a | 31.163a | 32.538a |
2 | 20.703a | 23.216a | 21.873a | 30.555a | 32.246a | |
3 | 21.866a | 21.039a | 22.098a | 32.814a | 31.869a | |
4 | 20.739a | 20.779a | 20.366a | 29.832a | 35.052a | |
去除基部5节和顶部5节后其他节位平均值 Average value of the other nodes after removing the base 5 nodes and the top 5 nodes | 1 | 20.382b | 20.139ab | 24.577a | 31.557a | 31.528b |
2 | 21.715ab | 22.865a | 21.507b | 31.906a | 33.556b | |
3 | 22.519a | 18.941b | 20.516b | 31.259a | 34.291ab | |
4 | 22.227a | 21.184ab | 19.382b | 31.810a | 34.882a |
表4
各指标的相关系数矩阵"
指标 Index | 蒴果长 CL | 裂口宽 COW | 裂口深 CDD | 蒴果宽 CW | 蒴果厚 CT | 果皮重 PW | C1 | C2 | 裂口深/蒴果长 CDD/CL | 果皮重/蒴果长 PW/CL | D值 D value |
---|---|---|---|---|---|---|---|---|---|---|---|
蒴果长CL | 1.0000 | ||||||||||
裂口宽COW | 0.5062 | 1.0000 | |||||||||
裂口深CDD | 0.6554 | 0.5770 | 1.0000 | ||||||||
蒴果宽CW | 0.4282 | 0.3949 | 0.2994 | 1.0000 | |||||||
蒴果厚CT | 0.4368 | 0.2164 | 0.2965 | 0.5118 | 1.0000 | ||||||
果皮重PW | 0.7243 | 0.4019 | 0.4767 | 0.7101 | 0.6662 | 1.0000 | |||||
C1 | -0.0427 | 0.8049 | 0.2332 | 0.1597 | -0.0551 | -0.0137 | 1.0000 | ||||
C2 | -0.1942 | 0.4027 | -0.4335 | 0.0982 | -0.0907 | -0.1020 | 0.6119 | 1.0000 | |||
裂口深/蒴果长 CDD/CL | 0.2019 | 0.4072 | 0.8486 | 0.1156 | 0.0858 | 0.1585 | 0.3336 | -0.4530 | 1.0000 | ||
果皮重/蒴果长 PW/CL | 0.3987 | 0.2310 | 0.2576 | 0.7128 | 0.6484 | 0.8948 | -0.0108 | -0.0427 | 0.0945 | 1.0000 | |
D值 D value | 0.5232 | 0.8394 | 0.4445 | 0.7049 | 0.5221 | 0.6940 | 0.6155 | 0.4104 | 0.2376 | 0.6271 | 1.0000 |
表5
各综合指标的系数及贡献率"
指标 Index | 蒴果长 CL | 裂口宽 COW | 裂口深 CDD | 蒴果宽 CW | 蒴果厚 CT | 果皮重 PW | C1 | C2 | 裂口深/蒴果长 CDD/CL | 果皮重/蒴果长 PW/CL | 贡献率 C |
---|---|---|---|---|---|---|---|---|---|---|---|
CI(1) | 0.3909 | 0.3222 | 0.3866 | 0.3643 | 0.3335 | 0.4299 | 0.1271 | -0.0622 | 0.2341 | 0.3005 | 0.4165 |
CI(2) | -0.0480 | 0.4889 | 0.0606 | -0.0940 | -0.1679 | -0.1967 | 0.6244 | 0.4753 | 0.1232 | -0.2197 | 0.2232 |
CI(3) | -0.0412 | 0.0052 | -0.4347 | 0.2610 | 0.2343 | 0.1840 | 0.0352 | 0.4936 | -0.5658 | 0.2958 | 0.1891 |
CI(4) | -0.6695 | -0.1791 | -0.0770 | 0.1940 | 0.0638 | -0.0460 | 0.2664 | -0.0690 | 0.4115 | 0.4743 | 0.0743 |
表8
从308份芝麻核心种质中鉴定发掘出的高抗裂蒴种质"
种质序号 Germplasm code | 来源地 Origin | 裂口宽 COW (cm) |
---|---|---|
HD01 | 中国湖北Hubei, China | 0.513 |
HD02 | 墨西哥Mexico | 0.517 |
HD03 | 中国江苏Jiangsu, China | 0.552 |
HD04 | 中国河北Hebei, China | 0.600 |
HD05 | 印度India | 0.613 |
HD06 | 韩国Korea | 0.622 |
HD07 | 中国湖北Hubei, China | 0.624 |
HD08 | 中国内蒙古 Inner Mongolia, China | 0.647 |
HD09 | 中国云南Yunnan, China | 0.658 |
HD10 | 中国湖南Hunan, China | 0.660 |
HD11 | 中国台湾Taiwan, China | 0.698 |
[1] |
窦福良, 魏东 . 芝麻饼粕中活性成分的提取方法研究进展. 食品科学, 2010,31(19):414.
doi: 10.7506/spkx1002-6630-201019091 |
DOU F L, WEI D . Research progress in extraction methods of active components from sesame cake. Food Science, 2010,31(19):414. (in Chinese)
doi: 10.7506/spkx1002-6630-201019091 |
|
[2] | 李娜 . 芝麻的营养成分与食疗保健作用. 中国食物与营养, 2008,13(5):55-57. |
LI N . Nutritional components and dietary healthcare of sesame. Food and Nutrition in China, 2008,13(5):55-57. (in Chinese) | |
[3] | 杨梅, 杨文娟, 高媛, 张艳欣, 朱晓冬, 周瑢, 黎冬华, 张秀荣, 吴文华, 王林海 . 芝麻蒴果大小相关性状的QTL定位分析. 中国油料作物学报, 2017,39(6):785-793. |
YANG M, YANG W J, GAO Y, ZHANG Y X, ZHU X D, ZHOU R, LI D H, ZHANG X R, WU W H, WANG L H . Quantitative trait locus mapping for sesame capsule size. Chinese Journal of Oil Crop Science, 2017,39(6):785-793. (in Chinese) | |
[4] |
张艳欣, 王林海, 黎冬华, 高媛, 吕海霞, 张秀荣 . 芝麻耐湿性QTL定位及优异耐湿基因资源挖掘. 中国农业科学, 2014,47(3):422-430.
doi: 10.3864/j.issn.0578-1752.2014.03.002 |
ZHANG Y X, WANG L H, LI D H, GAO Y, LÜ H X, ZHANG X R . Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Scientia Agricultura Sinica, 2014,47(3):422-430. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.002 |
|
[5] | LANGHAM D R . Progress in mechanizing sesame in the US through breeding. Trends in New Crops and New Uses, 2002: 157-173. |
[6] | SHIM K B, KANG C H, SEONG J D, HWANG C D, PAEK K Y, RHO J W, LEE Y Y, KIM H Y . A new sesame cultivar, "Kopoom" with shattering resistance, high quality and yielding. Korean Journal of Breeding Science, 2007: 114-115. |
[7] | YAMADA T, FUNATSUKI H, HAGIHARA S, FUJITA S, TANAKA Y, TSUJI H, ISHIMOTO M, FUJINO K, HAJIKA M . A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 2009,59(4):435-440. |
[8] | SUZUKI M, FUJINO K, NAKAMOTO Y, ISHIMOTO M . Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Molecular Breeding, 2010,25(3):407-418. |
[9] | DONG Y, YANG X, LIU J, WANG B H, LIU B L, WANG Y Z . Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014,5(2):3352. |
[10] | FUNATSUKI H, SUZUKI M, HIROSE A, INABA H, YAMADA T, HAJIKA M, KOMATSU K, KATAYAMA T, SAYAMA T, ISHIMOTO M, FUJINO K . Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(50):17797. |
[11] | RAMAN H, RAMAN R, KILIAN A, DETERING F, CARLING J, COONBES N, DIFFEY S, KADKOL G, EDWARDS D, MCCULLY M, RUPERAO P PARKIN I A P, BATLEY J, LUCKETT D, WRATTEN N, . Genome-Wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE, 2014,9(7):e101673. |
[12] | LIU J, WANG J, WANG H, WANG W X, ZHOU R J, MEI D S, CHENG H T, YANG J, RAMAN H, HU Q . Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Frontiers in Plant Science, 2016,7(1058):1-14. |
[13] | MONGKOLPORN O, KADKOL G P, PANG E C K, TAYLOR P W J . Identification of RAPD markers linked to recessive genes conferring siliqua shatter resistance in Brassica rapa. Plant Breeding, 2010,122(6):479-484. |
[14] | 刘婷婷, 孙盈盈, 曹石, 杨阳, 吴莲蓉, 左青松, 吴江生, 周广生 . 油菜抗裂角性状研究进展. 作物杂志, 2014(3):5-9. |
LIU T T, SUN Y Y, CAO S, YANG Y, WU L R, ZUO Q S, WU J S, ZHOU G S . Research advances on traits of resistance to pod shattering in rapeseed. Crops, 2014(3):5-9. (in Chinese) | |
[15] | LILJEGREN S J, ROEDER A H, KEMPIN S A, GREMSKI K, OSTERGAARD L, GUIMIL S, REYES D K, YANOFSKY M F . Control of fruit patterning in Arabidopsis by indehiscent. Cell, 2004,116(6):843-853. |
[16] | RAJANI S, SUNDARESAN V . The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 2001,11(24):1914-1922. |
[17] | LILJEGREN S J, DITTA G S, ESHED Y, SAVIDGE B, BOWMAN J L, YANOFSKY M F . SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000,404(6779):766-770. |
[18] | ØSTERGAARD L, KEMPIN S A, BIES D, KLEE H J, YANOFSKY M F . Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnology Journal, 2006,4(1):45-51. |
[19] | FUNATSUKI H, HAJIKA M, YAMADA T, SUZUKI M, HAGIHARA S, TANAKA Y, FUJITA S, ISHIMOTO M, FUJINO K . Mapping and use of QTLs controlling pod dehiscence in soybean. Breeding Science, 2012,61(5):554-558. |
[20] | QUICK G R . A quantitative shatter index for soybeans. Experimental Agriculture, 1974,10(2):149. |
[21] | WEEKS S A, WOLFORD J C, KLEIS R W . A tensile testing method for determining the tendency of soybean pods to dehisce. Transactions of the Asae, 1975,18(3):471-474. |
[22] | TOMASZEWSKI Z, KOCZOWSKA I . Metoda hodowli rzepiku ozimego TK-6. Biuletyn Institutu Hodowli I Aklimatyzacji Roslin, 1971,5:73-75. |
[23] | LOOF B, JONSSON R . Results of investigations on resistance to shedding in rape. Sveriges Utsadesforesnings Tidskrift, 1970,80:193-205. |
[24] | MORGAN C L, BRUCE D M, CHILD R, LADBROOKEA Z L, ARTHURA A E . Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Research, 1998,58(2):153-165. |
[25] | 谭小力, 张洁夫, 杨莉, 张志燕, 周佳, 姜松, 戚存扣 . 油菜角果裂角力的定量测定. 农业工程学报, 2006,22(11):40-43. |
TAN X L, ZHANG J F, YANG L, ZHANG Z Y, ZHOU J, JIANG S, QI C K . Quantitive determination of the strength of rapeseed pod dehiscence. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(11):40-43. (in Chinese) | |
[26] |
文雁成, 傅廷栋, 涂金星, 马朝芝, 沈竞雄, 张书芬 . 甘蓝型油菜抗裂角品种(系)的筛选与分析. 作物学报, 2008,34(1):163-166.
doi: 10.3724/SP.J.1006.2008.00163 |
WEN Y C, FU T D, TU J X, MA C Z, SHEN J X, ZHANG S F . Screening and analysis of resistance to silique shattering in rape (Brassica napus L.). Acta Agronomica Sinica, 2008,34(1):163-166. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00163 |
|
[27] |
彭鹏飞, 李云昌, 胡琼, 刘凤兰, 李英德, 徐育松, 梅德圣 . 甘蓝型油菜的抗裂角性鉴定及品种筛选. 华北农学报, 2009,24(6):223-226.
doi: 10.7668/hbnxb.2009.06.046 |
PENG P F, LI Y C, HU Q, LIU F L, LI Y D, XU Y S, MEI D S . Screen of varieties suitable for machine harvesting from new breeding hybrids or lines in Brassica napus. Acta Agriculturae Boreali-Sinica, 2009,24(6):223-226. (in Chinese)
doi: 10.7668/hbnxb.2009.06.046 |
|
[28] | LANGHAM D R . Method for making non-dehiscent sesame: US, US006100452A. 2000 -08-08. |
[29] |
黎冬华, 刘文萍, 张艳欣, 王林海, 危文亮, 高媛, 丁霞, 王蕾, 张秀荣 . 芝麻耐旱性的鉴定方法及关联分析. 作物学报, 2013,39(8):1425-1433.
doi: 10.3724/SP.J.1006.2013.01425 |
LI D H, LIU W P, ZHANG Y X, WANG L H, WEI W L, GAO Y, DING X, WANG L, ZHANG X R . Identification method of drought tolerance and association mapping for sesame (Sesamum indicum L.). Acta Agronomica Sinica, 2013,39(8):1425-1433. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01425 |
|
[30] | FUNATSUKI H, ISHIMOTO M, TSUJI H, KAWAGUCHI K, HAJIKA M, FUJINO K . Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed, 2006,125(2):195-197. |
[31] | 孙超才, 王伟荣, 李延莉, 钱小芳 . 适应机械收获的双低油菜新品种沪油17号的选育. 农业科技通讯, 2007(5):27-28. |
SUN C C, WANG W R, LI Y L, QIAN X F . Breeding of a double low rapeseed variety Huyou No.17 which is suitable for machinery harvest. Bulletin of Agricultural Science and Technology, 2007(5):27-28. (in Chinese) | |
[32] | WEN Y C, ZHANG S F, Yi B, WEN J, WANG J P, ZHU J C, HE J P, CAO J H . Identification of QTLs involved in pod-shatter resistance in Brassica napus L. Crop and Pasture Science, 2012,63(12):1082-1089. |
[33] | 彭鹏飞 . 甘蓝型油菜抗裂角性状的鉴定、遗传分析及QTL定位[D]. 北京: 中国农业科学院, 2009. |
PENG P F . Determination, genetic analysis and QTL mapping of pod shatter resistance in rapeseed (Brassica napus L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. ( in Chinese) | |
[34] | SZOT B, TYS J, SZPRYNGIEL M, GROCHOWICZ M . Determination of the reasons for rapeseed losses at combine harvesting and some methods of their limitation. Zeszyty Problemowe Postepow Nauk Rolniczych, 1991,389:221-232. |
[35] | 李耀明, 朱俊奇, 徐立章, 赵湛 . 基于悬空压裂法的油菜角果抗裂角力测试实验. 农业工程学报, 2012,28(8):111-114. |
LI Y M, ZHU J Q, XU L Z, ZHAO Z . Experiment on strength of rapeseed pod dehiscence based on impending fracturing method. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(8):111-114. (in Chinese) | |
[36] | 文雁成, 傅廷栋, 涂金星, 马朝芝, 沈金雄, 文静, 张书芬 . 影响甘蓝型油菜角果抗裂特性的因素分析. 中国油料作物学报, 2010,32(1):25-29. |
WEN Y C, FU T D, TU J X, MA C Z, SHEN J X, WEN J, ZHANG S F . Factors analysis of silique shatter resistance in rapeseed (Brassica napus L.). Chinese Journal of Oil Crop Science, 2010,32(1):25-29. (in Chinese) | |
[37] | KADKOL G P, HALLORAN G M, MACMILLAN R H . Evaluation of Brassica, genotypes for resistance to shatter: II. Variation in siliqua strength within and between accessions. Euphytica, 1985,34(3):915-924. |
[38] | ASHRI A, LADIJINSKI G . Anatomical effects of the capsule dehiscence alleles in sesame. Crop Science, 1964,4:136-138. |
[39] | BEDIGIAN D . Evolution of sesame revisited: domestication, diversity and prospects. Genetic Resources & Crop Evolution, 2003,50:779-787. |
[1] | 琚铭, 苗红梅, 黄盈盈, 马琴, 王慧丽, 王翠英, 段迎辉, 韩秀花, 张海洋. 芝麻种间杂交亲和性差异及杂种生物学特征分析[J]. 中国农业科学, 2022, 55(20): 3897-3909. |
[2] | 钟艳平,师立松,周瑢,高媛,何延庆,方圣,张秀荣,王林海,吴自明,张艳欣. 芝麻素高效提取检测技术的建立与高芝麻素种质的筛选[J]. 中国农业科学, 2022, 55(11): 2109-2120. |
[3] | 崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(1): 219-232. |
[4] | 李嘉伟,苏江硕,张飞,房伟民,管志勇,陈素梅,陈发棣. 基于表型性状构建传统菊花核心种质[J]. 中国农业科学, 2021, 54(16): 3514-3526. |
[5] | 刘爱丽,魏梦园,黎冬华,周瑢,张秀荣,游均. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析[J]. 中国农业科学, 2020, 53(17): 3432-3442. |
[6] | 李杰,贾栩超,张瑞芬,刘磊,池建伟,黄菲,董丽红,张名位. 黑芝麻黑色素的分离纯化、结构表征及体外抗氧化活性[J]. 中国农业科学, 2020, 53(12): 2477-2492. |
[7] | 曲玉杰, 孙君灵, 耿晓丽, 王骁, ZareenSarfraz, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究[J]. 中国农业科学, 2019, 52(9): 1488-1501. |
[8] | 孙建,颜小文,乐美旺,饶月亮,颜廷献,叶艳英,周红英. 芝麻不同抗旱基因型对花期干旱胁迫的生理响应机理[J]. 中国农业科学, 2019, 52(7): 1215-1226. |
[9] | 周瑢,刘盼,黎冬华,张艳欣,王林海,张秀荣,魏鑫. 芝麻硬脂酸脱饱和酶基因SiSAD的克隆及功能验证[J]. 中国农业科学, 2019, 52(10): 1678-1685. |
[10] | 韩亚飞,汪学德,郑永战,梅鸿献,魏安池,刘艳阳. 豫芝11号种子发育过程中蛋白质及其组分的变化规律[J]. 中国农业科学, 2018, 51(4): 652-661. |
[11] | 张玉娟,游均,刘爱丽,黎冬华,于景印,王燕燕,周瑢,宫慧慧,张秀荣. 芝麻发芽期耐盐性鉴定方法研究及耐盐候选基因的挖掘[J]. 中国农业科学, 2018, 51(12): 2235-2247. |
[12] | 刘文萍,吕伟,黎冬华,任果香,张艳欣,文飞,韩俊梅,张秀荣. 芝麻种质资源成株期抗旱性关联分析[J]. 中国农业科学, 2017, 50(4): 625-639. |
[13] | 刘艳阳,梅鸿献,杜振伟,武轲,郑永战,崔向华,郑磊. 基于表型和SSR分子标记构建芝麻核心种质[J]. 中国农业科学, 2017, 50(13): 2433-2441. |
[14] | 杨敏敏,刘红艳,周婷,瞿洪浩,杨远霄,魏鑫,左阳,赵应忠. 芝麻栽培种与野生种(Sesamum indicatum)杂种F1的获得及特性鉴定[J]. 中国农业科学, 2017, 50(10): 1763-1771. |
[15] | 代攀虹,孙君灵,何守朴,王立如,贾银华,潘兆娥,庞保印,杜雄明,王 谧. 陆地棉核心种质表型性状遗传多样性分析及综合评价[J]. 中国农业科学, 2016, 49(19): 3694-3708. |
|