中国农业科学 ›› 2014, Vol. 47 ›› Issue (18): 3523-3533.doi: 10.3864/j.issn.0578-1752.2014.18.001

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

植物应答低温胁迫的转录调控网络研究进展

刘辉,李德军,邓治   

  1. 中国热带农业科学院橡胶研究所/农业部橡胶树生物学与遗传资源利用重点实验室,海南儋州571737
  • 收稿日期:2014-03-12 修回日期:2014-05-28 出版日期:2014-09-16 发布日期:2014-09-16
  • 通讯作者: 刘辉,Tel:0898-23301174;E-mail:liuhui8645@163.com
  • 基金资助:
    国家自然科学基金(31301789)、中国热带农业科学院橡胶研究所基本科研业务费专项(1630022014006)

Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants

LIU Hui, LI De-jun, DENG Zhi   

  1. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources  of Rubber Tree, Ministry of Agriculture, Danzhou 571737, Hainan
  • Received:2014-03-12 Revised:2014-05-28 Online:2014-09-16 Published:2014-09-16

摘要: 低温胁迫严重影响植物的生长发育及作物的产量。为了生存,植物形成了复杂而高效的调控网络以抵御和适应低温胁迫,其中转录调控起关键作用。转录因子通过结合启动子区域的顺式作用元件,调控一系列基因的表达,在植物非生物逆境应答网络中起着关键作用。文章全面综述了参与调控植物低温胁迫应答的转录因子,包括AP2/ERF(APETALA2/ethylene responsive factor)、MYB(myeloblastosis)、bHLH(basic helix-loop-helix)、NAC(NAM、ATAF1、ATAF2和CUC2)、ZFP(zinc finger protein)、WRKY、VOZ(vascular plant one zinc-finger protein)、CAMTA(calmodulin-binding transcription activator)及EIN3(ethylene-insensitive 3)等,简要概述了各类转录因子的结构特征,重点介绍了其在植物抗寒中的功能及调控机制,并基于转录因子间的调控关系,绘制出植物低温应答的转录调控网络。在该调控网络中,CBF(C-repeat binding factor)转录因子起着关键分子开关的作用。CBFs特异地与启动子区域的DRE/CRT(dehydration-responsive element/C-repeat element,A/GCCGAC)顺式作用元件结合,从而激活COR(cold regulated)、LTI(low-temperature induced)、DHN(dehydrin)及RD(responsive to dehydration)等一系列低温应答基因的表达。CBFs的表达受ICE1/2(inducer of CBF expression 1/2)、CAA1(circadian clock-associated 1)、LHY(late elongated hypocotyl)、MYB56、ZFP1/182及CAMTA1/2/3等转录因子的正调控,而受MYB15、MYBS3、ZAT12、PIF4/7、WRKY34及EIN3等转录因子的负调控。ICE1蛋白的转录活性受翻译后修饰的严谨调控,包括SIZ1(SAP and Miz 1)介导的SUMO(small ubiquitin-related modifier)化修饰和HOS1(high expression of osmotically responsive gene 1)介导的泛素化修饰。HOS1-SIZ1系统精细严谨地调控着ICE1-CBFs及其靶基因的表达,以适应外界温度的变化。同时,ICE1的表达还受JAZ1/4的负调控和ERF2的正调控。除CBF依赖的低温应答信号途径外,一些转录因子则通过不依赖于CBF的途径调控植物低温应答,如JERF3、MYB2/4/96/3R-2、WRKY19/21/76、NAC1/2及SAP1/8等。植物低温应答转录调控网络为通过转基因技术提高农作物抗寒性提供了理论基础。转基因结果表明,AtCBF1AtCBF3AtICE1AtCCA1αTaCBF14/15TaNAC2TaWRKY19VrCBF1/4MdCIbHLH1PtrbHLHOsMYB2GmNAC20JERF3ZFP182等转录因子在植物抗寒遗传改良中具有潜在的应用价值。此外,文章还探讨了此领域研究中存在的主要问题及今后研究的重点,以期为进一步解析植物适应低温胁迫的分子机制提供参考。

关键词: 植物, 低温胁迫, 抗寒, 转录因子, 转录调控

Abstract: Cold stress seriously influences plant growth, development, and crop yield. In order to survive, plants have evolved complex and high-efficiency regulatory networks to respond and adapt to cold stress. Among these regulatory networks, transcriptional regulation plays crucial roles. Transcription factors can regulate a set of genes by binding to cis-acting regulatory elements in the promoter regions, and play crucial roles in abiotic stress-responsive transcriptional regulatory network in plants. In this review, the authors comprehensively summarized the transcription factors involved in regulating plant response to cold stress, including AP2/ERF (APETALA2/ethylene responsive factor), MYB (myeloblastosis), bHLH (basic helix-loop-helix), NAC (NAM, ATAF1, ATAF2 and CUC2), ZFP (zinc finger protein), WRKY, VOZ (vascular plant one zinc-finger protein), CAMTA (calmodulin-binding transcription activator), and EIN3 (ethylene-insensitive 3). Their structure characteristics were simply summarized, while their functions and regulatory mechanisms were emphatically introduced. Based on the relationships among transcription factors, a transcriptional regulatory network diagram of plant response to cold stress was draw. In this network, CBF (C-repeat binding factor) transcription factors are considered as master molecular switches. CBFs specifically bind to the DRE/CRT (dehydration-responsive element/C-repeat element, A/GCCGAC) cis-acting regulatory element of the promoter region of the cold-responsive genes, such as COR (cold regulated), LTI (low-temperature induced), DHN (dehydrin), RD (responsive to dehydration), etc, and activate their expression. The expression of CBFs are positively regulated by ICE1/2 (inducer of CBF expression 1/2), CAA1 (circadian clock-associated 1), LHY (late elongated hypocotyl), MYB56, ZFP1/182, and CAMTA1/2/3, whereas negatively regulated by MYB15, MYBS3, ZAT12, PIF4/7, WRKY34, and EIN3. The transcriptional activity of ICE1 protein is strictly regulated by post-translational modification, including SIZ1 (SAP and Miz 1)-mediated SUMO (small ubiquitin-related modifier) modification and HOS1 (high expression of osmotically responsive gene 1)-mediated ubiquitination. The HOS1–SIZ1 system strictly regulates and perfectly fine-tunes the expressions of ICE1–CBFs and their targets to cope with temperature change. Moreover, the expression of ICE1 is negatively regulated by JAZ1/4 and positively regulated by ERF2. Except the CBF-dependent cold-response pathway, some transcription factors regulate responses of plant to cold stress through CBF-independent pathways, such as JERF3, MYB2/4/96/3R-2, WRKY19/21/76, NAC1/2, SAP1/8, etc. Uncovering transcriptional regulatory network in response to cold stress in plants provide a theoretical basis for improving the cold tolerance of crops through transgenic technology. Transgenic studies indicate that some transcription factors possess potential usefulness in genetic improvement of cold stress tolerance in plants, such as AtCBF1AtCBF3, AtICE1, AtCCA1α, TaCBF14/15, TaNAC2, TaWRKY19, VrCBF1/4, MdCIbHLH1, PtrbHLH, OsMYB2, GmNAC20, JERF3, and ZFP182. Furthermore, the main problems in current researches and the key points in future studies were also proposed, in hope of providing reference for further revealing the molecular mechanisms underlying plant adaptation to cold stress.

Key words: plant, cold stress, cold tolerance, transcription factor, transcriptional regulation