中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2154-2166.doi: 10.3864/j.issn.0578-1752.2021.10.011
收稿日期:
2020-07-31
接受日期:
2020-12-08
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
杨萍
作者简介:
李杰,Tel:0873-3698630;E-mail: 基金资助:
LI Jie(),LUO JiangHong,YANG Ping(
)
Received:
2020-07-31
Accepted:
2020-12-08
Online:
2021-05-16
Published:
2021-05-24
Contact:
Ping YANG
摘要:
近年来,病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术作为一种研究植物基因功能的反向遗传学手段,因其构建简易、成本低、周期短等优势在功能基因组领域的研究更为广泛和深入。在蔬菜作物生长发育、逆境胁迫、物质合成和代谢调控等相关基因功能的研究中,VIGS作为一种快速、高效、高通量的基因沉默新技术发挥了重要作用。因此,利用VIGS技术开展蔬菜作物新基因的挖掘、抗病抗逆基因功能鉴定、作物改良、分子育种等相关研究的意义重大。目前,在蔬菜作物中已经成功建立了多种以病毒为载体的VIGS体系,但该体系仍然存在一些不足。随着研究者对VIGS作用机制的深入探究和病毒载体的不断开发,VIGS在蔬菜作物上的应用范围越来越广阔。本文通过梳理近年来国内外基于VIGS技术研究茄果类、瓜类和叶菜类等蔬菜基因功能的研究报道和发展趋势,对VIGS技术机制、病毒载体的应用以及VIGS技术进展做了简要解析,同时对比分析了VIGS技术与RNA干扰技术(RNA interference,RNAi)以及当前较为流行的CRISP/CAS9技术的优缺点。重点介绍VIGS技术在蔬菜果实发育和抗病中的应用,对该技术在蔬菜作物物质代谢、激素调控、生物与非生物胁迫应答方面的最新进展进行了综述,并列举了利用VIGS技术研究茄果类、瓜类、叶菜类和豆类蔬菜靶基因功能和沉默表型的案例,总结了VIGS技术在研究蔬菜作物基因功能时缺乏适合的VIGS载体,缺乏有效的病毒载体侵染方法,在某些组织中难以系统性沉默,沉默效率低,VIGS固有的局限性等方面存在的问题和不足。同时提出了未来VIGS技术在开发特异性与稳定性更高的病毒载体,选择高效的基因片段,建立适合更多寄主范围的病毒载体等方面的研究方向。对VIGS技术用于蔬菜基因功能分析、蔬菜作物改良、分子育种以及生产不携带外源基因的蔬菜品种育成等方面的应用前景进行了展望,以期为开展蔬菜作物生长发育、次生代谢、逆境胁迫等相关基因功能研究以及突破制约VIGS技术的关键因素研究提供思路与参考。
李杰,罗江宏,杨萍. 病毒诱导基因沉默在蔬菜作物上应用的研究进展[J]. 中国农业科学, 2021, 54(10): 2154-2166.
LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables[J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
表1
利用VIGS研究的茄果类蔬菜基因及其表型"
物种 Species | 靶基因 Target gene | 载体 Vector | 功能 Function | 沉默表型 Silencing phenotype | 参考文献 Reference |
---|---|---|---|---|---|
番茄 Tomato | KAS III, KAS IV/II-like | TRV | 酰基糖代谢 Acyl glucose metabolism | 直链脂肪酸减少 Reduced straight-chain fatty acids | [36] |
番茄 Tomato | SlSWEET1 | TRV | 糖的转运 Sugar transport | 己糖含量降低 Decreased hexose | [37] |
辣椒 Pepper | CaMYB108 | TRV | 辣椒素合成 Capsaicin synthesis | 花粉延迟开裂 Delayed pollen cracking | [38] |
辣椒 Pepper | pAMT | ALSV | 辣椒素合成 Capsaicin synthesis | 辣椒素含量降低 Capsaicin content decreased | [39] |
番茄 Tomato | SLAR | TRV | 类胡萝卜素合成 Carotenoids synthesis | 类胡萝卜素含量降低 Carotenoids content decreased | [40] |
茄子 Eggplant | PDS, CHLI, CHLH | TRV | 镁螯合酶 Magnesium chelatase | 叶片发黄 Foliage yellowing | [41] |
茄子 Eggplant | CHS | TRV | 类黄酮的合成 Flavonoids synthesis | 果实颜色变浅,果实弯曲 Changed fruit color and fruit curved | [42] |
番茄 Tomato | SlILL | TRV | 生长素合成 Auxin synthesis | 加速离层 Accelerate the abscission layer | [43] |
番茄 Tomato | LeCTR1 | TRV | 乙烯合成 Ethylene synthesis | 叶片弯曲减轻 Reduced leaf curve | [44] |
番茄 Tomato | DEK | TRV | 抗病性 Disease resistance | 抗病性减弱 Attenuates disease resistance | [45] |
茄子 | SPDS | TRV | 抗枯萎病 Resistant to wilt | 抗病性减弱 Attenuates disease resistance | [46] |
辣椒 Pepper | CaPHL8 | TRV | 青枯病 Bacterial wilt | 抗病性减弱 Attenuates disease resistance | [47] |
番茄 Tomato | SAHH1, MS1, GAD2 | TRV | 青枯病 Bacterial wilt | 抗病性减弱 Attenuates disease resistance | [48] |
番茄 Tomato | ShORR-1 | TRV | 白粉病 Powdery mildew | 叶片病斑增多 Leaf lesions increased | [49] |
辣椒 Pepper | CaWRKY45, CaWRKY58 | TRV | 抗病和抗旱 Resistance to disease and drought | 抗性减弱 Attenuates disease resistance | [50] |
番茄 Tomato | ABC-C6, ABC-G33 | TRV | 根系分泌 The root secretion | 根结线虫减少 Reduced nematodes | [51] |
茄子 Eggplant | NBS-LRR | TRV | 根结线虫 Nematodes | 抗病性减弱 Attenuates disease resistance | [52] |
辣椒 Pepper | CaWRKY27 | TRV | 盐胁迫 Salt stress | 抗性减弱 Attenuates resistance | [53] |
番茄 Tomato | GSTU43 | TRV | 抗低温性 Chilling resistance | 抗性减弱 Attenuates resistance | [54] |
辣椒 Pepper | CaDIF1, CaDIS1 | TRV | 脱落酸和干旱胁迫 ABA and drought stress | 气孔增大,蒸腾增加 Stomata and transpiration increases | [55] |
番茄 Tomato | MYB80 | TRV | 抗低温 Chilling stress | 抗低温减弱 Attenuates chilling resistance | [56] |
表2
利用VIGS研究的瓜类、叶菜类和豆类蔬菜基因及其表型"
物种 Species | 靶基因 Target gene | 载体 Vector | 功能 Function | 沉默表型 Silencing phenotype | 参考文献 Reference |
---|---|---|---|---|---|
黄瓜 Cucumber | GPAT6 | TRV | 不饱和脂肪酸的合成 Unsaturated fatty acids synthesis | 抗性增强 Enhanced resistance | [62] |
甜瓜 Muskmelon | LOX10 | TRV | 脂氧合酶合成 Lipoxygenase synthesis | 细胞程序性死亡 Programmed cell death | [63] |
菠菜 Spinach | GAL | BCTV | 调控开花 Regulation flowering | 雌花结构改变 Changed female flower | [64] |
叶用莴苣 Leaf lettuce | Hsp70 | TRV | 耐热性 Thermotolerance | 茎伸长 Stem elongation | [65] |
白菜 Chinese Cabbage | BrAN3, BrBRM | TYMV | 细胞伸长 Cell elongation | 叶片卷曲,小叶增多 Leaf curled and increased | [66] |
豌豆 Pea | CHLI | PEBV | 叶绿素的合成 Chlorophyll synthesis | 叶片发黄 Leaf yellowing | [67] |
豌豆 Pea | PsPIP2 | PEBV | 水通道蛋白合成 Aquaporin synthesis | 叶片和根系衰退 Organ declines of leaf and root | [68] |
[1] | 方智远. 中国蔬菜育种科学技术的发展与展望. 农学学报, 2018,8(1):21-27. |
FANG Z Y. Development progress and future perspectives of vegetable breeding sciences and technologies in China. Journal of Agriculture, 2018,8(1):21-27. (in Chinese) | |
[2] | 黄季焜, 王济民, 解伟, 王晓兵, 侯玲玲, 周慧, 盛誉, 刘旭. 现代农业转型发展与食物安全供求趋势研究. 中国工程科学, 2019,21(5):1-9. |
HUANG J K, WANG J M, XIE W, WANG X B, HOU L L, ZHOU H, SHENG Y, LIU X. Modern agricultural transformation and trend of food supply and demand in China. Engineering Science, 2019,21(5):1-9. (in Chinese) | |
[3] | 倪晓鹏, 高志红. 园艺作物基因组测序研究进展. 江苏农业科学, 2016,44(2):9-13. |
NI X P, GAO Z H. Research progress on genome sequencing of horticultural crops. Jiangsu Agricultural Science, 2016,44(2):9-13. (in Chinese) | |
[4] | 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014,41(09):1885-1894. |
SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing (VIGS). Acta Horticulturae Sinica, 2014,41(9):1885-1894. (in Chinese) | |
[5] |
BECKER A, LANGE M. VIGS-genomics goes functional. Trends in Plant Science, 2010,15(1):1-4.
doi: 10.1016/j.tplants.2009.09.002 |
[6] |
BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN- RASMUSSEN M, DUNOYER P, YAMAMOTO Y Y, SIEBURTH L, VOINNET O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320(5880):1185-1190.
doi: 10.1126/science.1159151 |
[7] |
LLAVE C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends in Plant Science, 2010,15(12):701-707.
doi: 10.1016/j.tplants.2010.09.001 |
[8] |
SENTHIL-KUMAR M, MYSORE K S. New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 2011,16(12):656-665.
doi: 10.1016/j.tplants.2011.08.006 |
[9] |
BURCH-SMITH T M, ANDERSON J C, MARTIN G B, DINESH-KUMAR S P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal, 2004,39(5):734-746.
doi: 10.1111/tpj.2004.39.issue-5 |
[10] |
MANNING K, TÖR M, POOLE M, HONG Y, THOMPSON A J, KING G J, GIOVANNONI J J, SEYMOUR G B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006,38(8):948-952.
doi: 10.1038/ng1841 |
[11] |
SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal, 2011,9(7):797-806.
doi: 10.1111/pbi.2011.9.issue-7 |
[12] |
IGARASHI A, YAMAGATA K, SUGAI T, TAKAHASHI Y, SUGAWARA E, TAMURA A, YAEGASHI H, YAMAGISHI N, TAKAHASHI T, ISOGAI M, TAKAHASHI H, YOSHIKAWA N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009,386(2):407-416.
doi: 10.1016/j.virol.2009.01.039 |
[13] |
GOLENBERG E M, SATHER D N, HANCOCK L C, BUCKLEY K J, VILLAFRANCO N M, BISARO D M. Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods , 2009,5:9.
doi: 10.1186/1746-4811-5-9 |
[14] |
PANDEY P, CHOUDHURY N R, MUKHERJEE S K. A geminiviral amplicon VA derived from tomato leaf curl virus ToLCV can replicate in a wide variety of plant species and also acts as a VIGS vector. Virology Journal, 2009,6:152.
doi: 10.1186/1743-422X-6-152 |
[15] |
CAI X Z, WANG C C, XU Y P, XU Q F, ZHENG Z, ZHOU X P. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research, 2007,125(2):169-175.
doi: 10.1016/j.virusres.2006.12.016 |
[16] |
HUANG C J, XIE Y, ZHOU X P. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnology Journal, 2009,7(3):254-265.
doi: 10.1111/pbi.2009.7.issue-3 |
[17] | 李国龙, 吴海霞, 孙亚卿. 甜菜BvWRKY23基因的RNAi载体构建. 作物杂志, 2020(5):41-47. |
LI G L, WU H X, SUN Y Q. Construction of RNAi expression vector of BvWRKY23 gene in sugar beet. Crops, 2020(5):41-47. (in Chinese) | |
[18] | KUMAGAI M, DONSON J, DELLA-CIOPPA G, HARVEY D, HANLEY K, GRILL L K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences, 1995,92(5):1679-1683. |
[19] |
RUIZ M T, VOINNET O, BAULCOMBE D C. Initiation and maintenance of virus-induced gene silencing. The Plant Cell Online, 1998,10(6):937-946.
doi: 10.1105/tpc.10.6.937 |
[20] |
VALENTINE T, SHAW J, BLOK V C, PHILLIPS M S, OPARKA K J, LACOMME C. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology, 2004,136(4):3999-4009.
doi: 10.1104/pp.104.051466 |
[21] |
WANG X Y, CAO A Z, YU C M, WANG D W, WANG X E, CHEN P D. Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa. Molecular Biology Reports, 2010,37(2):967-972.
doi: 10.1007/s11033-009-9766-1 |
[22] | 张怡, 阮九霄, 马晓萌, 傅露露, 乔月娥, 段素娟, 孟娉, 李成伟. 大豆胞囊线虫VIGS载体的构建与鉴定. 华北农学报, 2012,27(3):223-226. |
ZHANG Y, RUAN J X, MA X M, FU L L, QIAO Y E, DUAN S J, MENG P, LI C W. Identification and construction of the recombinant vector of virus induced gene silencing of soybean heterodera glycines ichinohe. Acta Agricultural Boreali-Sinica, 2012,27(3):223-226. (in Chinese) | |
[23] | PANDEY P, SENTHIL-KUMAR M, MYSORE K S. Advances in plant gene silencing methods. Methods in Molecular Biology, 2015,1287(3):3-23. |
[24] | 赵祯, 刘富中, 张映, 齐东霞, 陈钰辉, 连勇. 茄子SmMsrA基因VIGS表达载体的构建及表达分析. 园艺学报, 2015,42(8):1495-1504. |
ZHAO Z, LIU F Z, ZHANG Y, QI D X, CHEN Y H, LIAN Y. VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant. Acta Horticulturae Sinica, 2015,42(8):1495-1504. (in Chinese) | |
[25] | 宋恬, 田嘉, 李鹏, 刘梦婕, 张琦, 郭长奎, 李疆. 扁桃AcCBF1基因VIGS载体构建与功能分析. 果树学报, 2019,36(4):421-429. |
SONG T, TIAN J, LI P, LIU M J, ZHANG Q, GUO C K, LI J. Vector construction and functional analysis of AcCBF1 using VIGS method in almond flower organs. Journal of Fruit Science, 2019,36(4):421-429. (in Chinese) | |
[26] | 邱润霜, 赵立华, 张晓明, 崔玥, 张洁, 郑雪, 李靖, 张仲凯. 番茄斑萎病毒N基因的VIGS载体构建. 植物病理学报, 2020,50(6):1-12. |
QIU R S, ZHAO L H, ZHANG X M, CUI Y, ZHANG J, ZHENG X, LI J, ZHANG Z K. Construction of a VIGS vector containing N gene derived from tomato spotted wilt orthotospovirus. Acta Phytopathologica Sinica, 2020,50(6):1-12. (in Chinese) | |
[27] | 杨同文, 武安泉, 盛东峰, 李成伟. 病毒诱导的基因沉默在番茄功能基因组学研究中的应用进展. 园艺学报, 2014,41(3):564-576. |
YANG T W, WU A Q, SHENG D F, LI C W. Applications of virus-induced gene silencing in studies on tomato functional genomics. Acta Horticulturae Sinica, 2014,41(3):564-576. (in Chinese) | |
[28] | 刘美, 刘莉铭, 吴会杰, 古勤生. VIGS技术的研究进展及其在葫芦科作物中的应用. 果树学报, 2018,35(11):1422-1429. |
LIU M, LI L M, WU H J, GU Q S. Research progress in VIGS technology and its application in Cucurbitaceae crops. Journal of Fruit Science, 2018,35(11):1422-1429. (in Chinese) | |
[29] | 郑璐平, 谢荔岩, 林奇英, 谢联辉. 病毒诱导基因沉默的研究进展. 福建农林大学学报(自然科学版), 2008,37(6):636-640. |
ZHENG L P, XIE L Y, LIN Q Y, XIE L H. Advance in virus-induced gene silencing. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008,37(6):636-640. (in Chinese) | |
[30] |
TUTTLE J R, HAIGLER C H, ROBERTSON D. Method: Low-cost delivery of the cotton leaf crumple virus-induced gene silencing system. Plant Methods, 2012,8(1):27.
doi: 10.1186/1746-4811-8-27 |
[31] | 王晓迪, 冀顺霞, 申晓娜, 刘万学, 万方浩, 张桂芬, 吕志创. 纳米载导RNAi技术在害虫防治中的研究和应用. 中国生物防治学报, 2020: 1-20. |
WANG X D, JI S X, SHEN X N, LIU W X, WAN F H, ZHANG G F, LÜ Z C. Research and application of nanoparticle-mediated RNAi technology in pest control. Chinese Journal of Biological Control, 2020, 1-20. (in Chinese) | |
[32] | 武林琳, 竹梦婕, 王咪, 李晓萍, 刘跃鹏, 裴蕾, 杨淑巧, 许琦, 王华, 郭文治. CRISPR/Cas9技术在农作物中应用的局限及改进. 现代农业科技, 2020(22):26-29. |
WU L L, ZHU M J, WANG M, LI X P, LIU Y P, PEI L, YANG S Q, XU Q, WANG H, GUO W Z. The limitation and improvement of CRISPR/Cas9 technology in crops application. Modern Agricultural Science and Technology, 2020(22):26-29. (in Chinese) | |
[33] |
RAMEGOWDA V, SENTHIL-KUMAR M, UDAYAKUMAR M, MYSORE K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 2013,13(1):193-210.
doi: 10.1186/1471-2229-13-193 |
[34] | ZHAO J P, WANG G Y, JIANG H L, LIU T L, DONG J G, WANG Z H, ZHANG B L, SONG J Q. Virus-based microRNA silencing in plants. Methods in Molecular Biology, 2020,2172:243-257. |
[35] |
CONG L, RAN F A, COX D, LIN S L, BARRETTO R, HABIB N, HSU P D, WU X B, JIANG W Y, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143 |
[36] |
MANDAL S, JI W M, MCKNIGHT T D. Candidate gene networks for acylsugar metabolism and plant defense in wild tomato Solanum pennellii. The Plant Cell, 2020,32(1):81-99.
doi: 10.1105/tpc.19.00552 |
[37] |
HO L H, KLEMENS PATRICK A W, NEUHAUS H E, KO H Y, HSIEH S Y, GUO W J. SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany, 2019,70(12):3241-3254.
doi: 10.1093/jxb/erz154 |
[38] |
SUN B M, ZHU Z S, CHEN CH J, CHEN G J, CAO B H, CHEN C M, LEI J J. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum. Journal of Agricultural and Food Chemistry, 2019,67(39):10891-10903.
doi: 10.1021/acs.jafc.9b04978 |
[39] |
LI C J, HIRANO H, KASAJIMA I, YAMAGISHI N, YOSHIKAWA N. Virus-induced gene silencing in chili pepper by apple latent spherical virus vector. Journal of Virological Methods, 2019,273:113711.
doi: 10.1016/j.jviromet.2019.113711 |
[40] |
D'AMELIA V, RAIOLA A, CARPUTO D, FILIPPONE E, BARONE A, RIGANO M M. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Scientific Reports, 2019,9(1):3699.
doi: 10.1038/s41598-019-40142-3 |
[41] |
WANG C C, SULLI M, FU D Q. The role of phytochromes in regulating biosynthesis of sterol glycoalkaloid in eggplant leaves. PLoS ONE, 2017,12(12):e0189481.
doi: 10.1371/journal.pone.0189481 |
[42] |
WANG C C, FU D Q. Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism. Journal of Agricultural and Food Chemistry, 2018,66(11):2623-2629.
doi: 10.1021/acs.jafc.7b05617 |
[43] |
FU X, SHI Z H, JIANG Y, JIANG L L, QI M F, XU T, LI T L. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biology, 2019,19(1):233.
doi: 10.1186/s12870-019-1840-9 |
[44] | CHANDAN R K, SINGH A K, PATEL S, SWAIN D M, TUUEJA N, JHA G. Silencing of tomato CTR1 provides enhanced tolerance against tomato leaf curl virus infection. Plant Signaling & Behavior, 2019,14(3):e1565595. |
[45] |
ZHANG H J, YAN M J, DENG R, SONG F M, JIANG M. The Silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus- induced gene silencing analysis in tomato. Gene, 2020,727:144245.
doi: 10.1016/j.gene.2019.144245 |
[46] |
QIU Z K, YAN S H, XIA B, JIANG J, YU B W, LEI J J, CHEN C M, CHEN L, YANG Y, WANG YQ, TIAN S B, CAO B H. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. Journal of Experimental Botany, 2019,70(19):5343-5354.
doi: 10.1093/jxb/erz259 |
[47] |
ALI N, ANSAR H, MUHAMMAD A, MUHAMMAD I K, MUHAMMAD F A, MADIHA Z, KHALID A K, HAMED A G, HE S L. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen. Microbial Pathogenesis, 2019,137(12):103758.
doi: 10.1016/j.micpath.2019.103758 |
[48] |
WANG G P, KONG J, CUI D D, ZHAO H B, NIU Y, XU M Y, JIANG G F, ZHAO Y H, WANG W Y. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. The Plant Journal, 2019,97(6):1032-1047.
doi: 10.1111/tpj.2019.97.issue-6 |
[49] |
ZHANG Y, XU K D, PEI D L, YU D S, ZHANG J, LI X L, CHEN G, YANG H, ZHOU W J, LI C W. ShORR-1, a novel tomato gene, confers enhanced host resistance to Oidium neolycopersici. Frontiers in Plant Science, 2019,10(7):1400.
doi: 10.3389/fpls.2019.01400 |
[50] |
CHENG Y, AHAMMED G J, YAO Z P, YE Q J, RUAN M Y, WANG R Q, LI Z M, ZHOU G Z, WAN H J. Comparative genomic analysis reveals extensive genetic variations of WRKYs in solanaceae and functional variations of CaWRKYs in pepper. Frontiers in Genetics, 2019,10:492.
doi: 10.3389/fgene.2019.00492 |
[51] |
COX D E, DYER S, WEIR R, CHESETO X, STURROCK M, COYNE D, TORTO B, MAULE A G, DALZELL J J. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere. Scientific Reports, 2019,9(1):19899.
doi: 10.1038/s41598-019-56493-w |
[52] |
ZHOU X H, LIU J, BAO S Y, YANG Y, ZHUANG Y. Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to meloidogyne incognita. International Journal of Molecular Sciences, 2018,19(2):583.
doi: 10.3390/ijms19020583 |
[53] |
LIN J H, DANG F F, CHEN Y P, GUAN D Y, HE S L. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. Plant Physiology and Biochemistry, 2019,145(12):43-51.
doi: 10.1016/j.plaphy.2019.08.013 |
[54] |
LIU T, DU Q J, LI S Z, YANG J Y, LI X J, XU J J, CHEN P X, LI J M, HU X H. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC Plant Biology, 2019,19(1):323.
doi: 10.1186/s12870-019-1929-1 |
[55] |
LIM J S, LIM C W, LEE S C. Functional analysis of pepper F-box protein CaDIF1 and its interacting partner CaDIS1: Modulation of ABA signaling and drought stress response. Frontiers in Plant Science, 2019,10:1365.
doi: 10.3389/fpls.2019.01365 |
[56] |
CHEN X H, DUAN X F, WANG S, WU W Y, ZHANG X C. Virus-induced gene silencing (VIGS) for functional analysis of MYB80 gene involved in Solanum lycopersicum cold tolerance. Protoplasma, 2019,256(2):409-418.
doi: 10.1007/s00709-018-1302-5 |
[57] | 朱梦卓, 赵俊杰. 基于SCIE收录论文的中日基因编辑技术领域国际合作比较. 中华医学图书情报杂志, 2019,28(3):32-41. |
ZHU M Z, ZHAO J J. Comparison of SCIE-covered international cooperation papers on gene editing technology between people's republic of China and Japan. Chinese Journal of Medical Library and Information Science, 2019,28(3):32-41. (in Chinese) | |
[58] |
WANG H Y, YANG H, SHIVALILA C S, DAWLATY M M, CHENG A W, ZHANG F, JAENISCH R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013,153(4):910-918.
doi: 10.1016/j.cell.2013.04.025 |
[59] | 黄少勇, 王娟, 王柏柯, 李宁, 唐亚萍, 杨生保, 杨涛, 张国儒, 帕提古丽·艾斯木托拉, 高杰, 余庆辉. CRISPR/Cas9技术在园艺作物中的研究进展. 新疆农业科学, 2020,57(07):1223-1232. |
HUANG S Y, WANG J, WANG B K, LI N, TANG Y P, YANG S B, YANG T, ZHANG G R, PATIGULI A, GAO J, YU Q H. Application progress of CRISPR/Cas9 technology in horticultural crops. Xinjiang Agricultural Sciences, 2020,57(7):1223-1232. (in Chinese) | |
[60] | 许志茹, 刘通, 崔国新, 李春雷, 马静, 李玉花. 芜菁二氢黄酮醇4-还原酶基因的克隆与功能鉴定. 园艺学报, 2014,41(4):687-700. |
XU Z R, LIU T, CUI G X, LI C L, MA J, LI Y H. Cloning and function identification of dihydroflavonol 4-reductase genes in turnip. Acta Horticulturae Sinica, 2014,41(4):687-700. (in Chinese) | |
[61] | YIN Y L, QIN K Z, SONG X W, ZHANG Q H, ZHOU Y H, XIA X J, YU J Q. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinases-mediated reactive oxygen species signaling in tomato. Plant Cell Physiology, 2018,59(11):2239-2254. |
[62] |
BU R F, WANG R H, WEI Q C, HU H Y, SUN H L, SONG P W, YU Y G, LIU Q L, ZHENG Z C, LI T, LI D X, WANG L, CHEN S J, WU L L, WU J Y, LI C W. Silencing of glycerol-3-phosphate acyltransferase 6 (GPAT6) gene using a newly established virus induced gene silencing (VIGS) system in cucumber alleviates autotoxicity mimicked by cinnamic acid (CA). Plant and Soil, 2019,438:329-346.
doi: 10.1007/s11104-019-03996-0 |
[63] |
LIAO J J, WANG C H, XING Q J, LI Y P, LIU X F, QI H Y. Overexpression and vigs system for functional gene validation in oriental melon (Cucumis melo var. makuwa makino). Plant Cell, Tissue and Organ Culture, 2019,137:275-284.
doi: 10.1007/s11240-019-01568-9 |
[64] |
WEST N W, GOLENBERG E M. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. The New phytologist, 2018,217(3):1322-1334.
doi: 10.1111/nph.14919 |
[65] | 李雅博, 李婷, 韩莹琰, 范双喜. 叶用莴苣热激蛋白基因LsHsp70-2711的克隆及高温胁迫下的功能分析. 中国农业科学, 2017,50(8):1486-1494. |
LI Y B, LI P, HAN Y Y, FAN S X. Cloning and function analysis of heat-shock-protein LsHsp70-2711 gene under high temperature stress in leaf lettuce (Lactuca sativa L.). Scientia Agricultura Sinica, 2017,50(8):1486-1494. (in Chinese) | |
[66] |
YU J, GAO L W, LIU W S, SONG L X, XIAO D, LIU T K, HOU XILIN, ZHANG C W. Transcription coactivator ANGUSTIFOLIA3 (AN3) regulates leafy head formation in Chinese cabbage. Frontiers in Plant Science, 2019,10:520.
doi: 10.3389/fpls.2019.00520 |
[67] |
LUO S, LUO T, PENG P, LI Y P, LI X G. Disturbance of chlorophyll biosynthesis at Mg branch affects the chloroplast ROS homeostasis and Ca2+ signaling in Pisum sativum. Plant Cell, Tissue and Organ Culture, 2016,127(3):729-737.
doi: 10.1007/s11240-016-1008-3 |
[68] |
SONG J J, YE G L, QIAN Z, YE Q. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum. Botanical Studies, 2016,57(1):15.
doi: 10.1186/s40529-016-0135-9 |
[69] | AKI I, KOUSUKE Y, TOMOKAZU S, YUKARI T, EMIKO S, AKIHIRO T, HAJIME Y, NORIKO Y, TSUBASA T, MASAMICHI I, HIDEKI T, NOBUYUKI Y. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits and legumes. Virology, 2009,386(2):407-416. |
[70] |
MA C F, LIU M C, LI Q F, SI J, REN X S, SONG H Y. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Horticultural Plant Journal, 2019,5(4):164-169.
doi: 10.1016/j.hpj.2019.04.001 |
[71] |
CONSTANTIN G D, KRATH B N, MACFARLANE S A, NICOLAISEN M, JOHANSEN I E, LUND O S. Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 2004,40(4):622-631.
doi: 10.1111/tpj.2004.40.issue-4 |
[72] |
ZHANG C Q, BRADSHAW J D, WHITHAM S A, HILL J H. The Development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiology, 2010,153(1):52-65.
doi: 10.1104/pp.109.151639 |
[73] | 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020,26(5):82-89. |
LIU T B, CAI H L, TENG K, ZENG W A, MAO H, WEI R J, ZHOU Z C, ZHOU X P, DAI L Y, TANG Q J. Control of tobacco potato virus Y by virus-induced gene silencing. Acta Tabacaria Sinica, 2020,26(5):82-89. (in Chinese) | |
[74] | 李姣, 于宗霞, 冯宝民. 植物中病毒诱导基因沉默技术的研究与应用进展. 分子植物育种, 2019,17(5):1537-1542. |
LI J, YU Z X, FENG B M. Advances in research and application of virus induced gene silencing in plants. Molecular Plant Breeding, 2019,17(5):1537-1542. (in Chinese) | |
[75] |
NEENA M, ELIZABETH A W, KARL E R, PENG L, RITESH G J, CHRISTELLE T A, STEPHEN J F, BERNARD J C, LU G Q, XU Z P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017,3(2):16207.
doi: 10.1038/nplants.2016.207 |
[76] |
JAMES A B, THIERRY B, WILLIAM C, GREGORY R H, PASCALE F, OLIVER, SCOTT J, GEERT P, TICHAFA M, MICHAEL P, TY V, JAMES R. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007,25(11):1322-1326.
doi: 10.1038/nbt1359 |
[77] | 王栋, 陈源泉, 李道亮, 朱万斌, 谭伟明, 杜太生, 田见晖, 康绍忠. 农业领域若干颠覆性技术初探. 中国工程科学, 2018,20(6):57-63. |
WANG D, CHEN Y Q, LI D L, ZHU W B, TAN W M, DU T S, TIAN J H, KANG S Z. Foresight of disruptive technologies in agricultural engineering. Engineering Science, 2018,20(6):57-63. (in Chinese) | |
[78] |
ZHU K Y, PALLI S R. Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 2020,65(1):293-311.
doi: 10.1146/annurev-ento-011019-025224 |
[79] | 张守路, 饶力群, 汪启明. 基于RNAi的转基因作物研发进展. 现代农业科技, 2018(21):3-4, 6. |
ZHANG S L, RAO L Q, WANG Q M. Advances in research and development of genetically modified crops based on RNAi. XianDai NongYe KeJi, 2018(21):3-4, 6. (in Chinese) | |
[80] |
DONOHOUE P D, BARRANGOU R, MAY A P. Advances in industrial biotechnology using CRISPR-Cas systems. Trends in Biotechnology, 2018,36(2):134-146.
doi: 10.1016/j.tibtech.2017.07.007 |
[81] |
SENTHIL-KUMAR M, MYSORE K S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols, 2014,9(7):1549-1562.
doi: 10.1038/nprot.2014.092 |
[82] | 周洋丽, 侯朔, 郑正权, 高燕会, 童再康. 基于VIGS基因沉默体系的换锦花LsMYBs基因功能研究. 农业生物技术学报, 2020,28(6):974-983. |
ZHOU Y L, HOU S, ZHENG Z Q, GAO Y H, TONG Z K. Study on LsMYBs gene function in Lycoris sprengeri based on VIGS gene silencing system. Journal of Agricultural Biotechnology, 2020,28(6):974-983. (in Chinese) | |
[83] |
CAI Q, QIAO L L, WANG M, HE B Y, LIN F M, PALMQUIST J, HUANG H D, JIN H L. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 2018,360(6393):1126-1129.
doi: 10.1126/science.aar4142 |
[1] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[4] | 赫可伟,陈甲法,周子键,吴建宇. 基于宿主诱导的基因沉默技术创制抗拟轮枝镰孢玉米自交系[J]. 中国农业科学, 2021, 54(9): 1835-1845. |
[5] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[6] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[7] | 曲潇玲,焦裕冰,罗健达,宋丽云,李莹,申莉莉,杨金广,王凤龙. 本氏烟NbNAC062的克隆及对马铃薯Y病毒侵染的抑制作用[J]. 中国农业科学, 2021, 54(19): 4110-4120. |
[8] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[9] | 张桂芬,张毅波,刘万学,张帆,冼晓青,万方浩,冯晓东,赵静娜,刘慧,刘万才,张晓明,李庆红,王树明. 诱捕器颜色和悬挂高度对番茄潜叶蛾诱捕效果的影响[J]. 中国农业科学, 2021, 54(11): 2343-2354. |
[10] | 柴亚茹,丁一娟,周思钰,杨文静,闫宝琴,远俊虎,钱伟. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定[J]. 中国农业科学, 2020, 53(4): 761-770. |
[11] | 龚明月,段啸天,余婷婷,王杰,申莉莉,李莹,刘明宏,李永亮,吕洪坤,章松柏,杨金广. 烟草Hsc70-2的克隆及对马铃薯Y病毒侵染烟草的促进作用[J]. 中国农业科学, 2020, 53(4): 771-781. |
[12] | 刘勇,李凡,李月月,张松柏,高希武,谢艳,燕飞,张安盛,戴良英,程兆榜,丁铭,牛颜冰,王升吉,车海彦,江彤,史晓斌,何自福,吴云锋,张德咏,青玲,严婉荣,杨学辉,汤亚飞,郑红英,唐前君,章松柏,章东方,蔡丽,陶小荣. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势[J]. 中国农业科学, 2019, 52(2): 239-261. |
[13] | 刘彦君,刘哲,孟祥红,陆柏益. 基于多样度、匹配度和平衡度的常见蔬菜营养价值评价[J]. 中国农业科学, 2019, 52(18): 3177-3191. |
[14] | 刘芮池,程有普,柴阿丽,石延霞,谢学文,帕提古丽,李宝聚. 蔬菜土传病原菌三重PCR检测体系的建立与应用[J]. 中国农业科学, 2019, 52(12): 2069-2078. |
[15] | 王秋莹,王伟巧,张艳,王国宁,吴立强,张桂寅,马峙英,杨君,王省芬. 棉花CRVW的克隆与抗黄萎病功能分析[J]. 中国农业科学, 2019, 52(11): 1858-1869. |
|