[1] 贺佳, 刘冰锋, 李军. 不同生育时期冬小麦叶面积指数高光谱遥感监测模型. 农业工程学报, 2014, 30(24): 141-150.
He J, Liu B F, Li J. Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 141-150. (in Chinese)
[2] Jin X L, Yang G J, Xu X G, Yang H, Feng H K, Li Z H, Shen J X, Lan Y B, Zhao C C. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 2015, 7(10): 13251-13272.
[3] Vina A, Gitelson A A, Nguyrobertson A L, Peng Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 2011, 115(12): 468-3478.
[4] 赵春江. 精准农业研究与实践. 北京: 科学出版社, 2009.
ZHAO C J. Precision Agriculture Research and Practice. Beijing: Science Press, 2009. (in Chinese)
[5] 王纪华, 赵春江, 黄文江. 农业定量遥感基础与应用. 北京: 科学出版社, 2008.
WANG J H, ZHAO C J, HUANG W J. Basis and Application of Quantitative Remote Sensing of Agriculture. Beijing: Science Press, 2008. (in Chinese )
[6] 宋开山, 张柏, 王宗明, 张渊智, 刘焕军. 基于人工神经网络的大豆叶面积高光谱反演研究. 中国农业科学, 2006, 39(6): 1138-1145.
SONG K S, ZHANG B, WANG Z M, ZHANG Y Z, LIU H J. Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks. Scientia Agricultura Sinica, 2006, 39(6): 1138-1145. (in Chinese)
[7] GITELSON A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 2004, 161(2): 165-173.
[8] 李鑫川, 徐新刚, 鲍艳松, 黄文江, 罗菊花, 董莹莹, 宋晓宇, 王纪华. 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 中国农业科学, 2012, 45(17): 3486-3496.
LI X C, XU X G, BAO Y S, HUANG W J, LUO J H, DONG Y Y, SONG X Y, WANG J H. Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method. Scientia Agricultura Sinica, 2012, 45(17): 3486-3496. (in Chinese )
[9] LIANG L, DI L P, ZHANG L P, DENG M X, QIN Z H, ZHAO S H, LIN H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 2015, 165: 123-134.
[10] LIU J G, PATTEY E, JEGO G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 2012, 123(3): 347-358.
[11] 夏天, 吴文斌, 周清波, 周勇. 冬小麦叶面积指数高光谱遥感反演方法对比. 农业工程学报, 2013, 29(3): 139-147.
XIA T, WU W B, ZHOU Q B, ZHOU Y. Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 139-147. (in Chinese)
[12] 谢巧云, 黄文江, 梁栋, 彭代亮, 黄林生, 宋晓宇, 张东彦, 杨贵军. 最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究.光谱学与光谱分析, 2014, 34(2): 489-493.
XIE Q Y, HUANG W J, LIANG D, PENG D L, HUANG L S, SONG X Y, ZHANG D Y, YANG G J. Research on universality of least squares support vector machine method for estimating leaf area index of winter wheat. Spectroscopy and Spectral Analysis, 2014, 34(2): 489-493. (in Chinese)
[13] 梁栋, 管青松, 黄文江, 黄林生, 杨贵军. 基于支持向量机回归的冬小麦叶面积指数遥感反演. 农业工程学报, 2013, 29(7): 117-123.
LIANG D, GUAN Q S, HUANG W J, HUANG L S, YANG G J. Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 117-123. (in Chinese)
[14] 韩兆迎, 朱西存, 房贤一, 王卓远, 王凌, 赵庚星, 姜远茂. 基于SVM与RF的苹果树冠LAI高光谱估测. 光谱学与光谱分析, 2016, 36(3): 800-805.
HAN Z Y, ZHU X C, FANG X Y, WANG Z Y, WANG L, ZHAO G X, JIANG Y M. Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Spectroscopy and Spectral Analysis, 2016, 36(3): 800-805. (in Chinese)
[15] 李粉玲, 王力, 刘京, 常庆瑞. 基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算. 农业机械学报, 2015, 46(9): 273-281.
LI F L, WANG L, LIU J, CHANG Q R. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese)
[16] PENUELAS J, ISLA R, FILELLA I, ARAUS J L. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Science, 1997, 37(1): 198-202.
[17] HATFIELD J L, KANEMASU E T, ASRAR G, JACKSON R D, PINTER P J, REGINATO R J, IDSO S B. Leaf area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 1985, 6(1): 167-175.
[18] SHIBAYAMA M T, AKIYAMA T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 1989, 27(2): 119-127.
[19] RONDEAUX G, STEVEN M, BARET F. Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107.
[20] BARET F, GUVOT G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 1991, 35(2): 161-173.
[21] GITELSON A A, KAUFMAN Y, MERZLYAK M N. Use of green channel in remote of sensing global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298.
[22] QI J, CHEHBOUNI A, HUETE A R, KERR Y H, SOROOSHIAN S. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2): 119-126.
[23] GITELSON A A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 1994, 143(3): 286-292.
[24] HABOUDANE D, MILLER J R, PATTEY E, ZARCOTEJADA P J, STRACHAN L B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.
[25] BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172.
[26] HUETE A R, JUSTICE C, LIU H. Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 1994, 49(3): 224-234.
[27] LI F, MISTELE B, HU Y, CHEN X, SCHMIDHALTER U. Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany. Agricultural and Forest Meteorology, 2013, 180(8): 44-57.
[28] TANAKA S, KAWAMURA K, MAKI M, MURAMOTO Y, YOSHIDA K, AKIYAMA T. Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: A case study in Gifu prefecture, Central Japan. Remote Sensing, 2015, 7(5): 5329-5346.
[29] 任哲, 陈怀亮, 王连喜, 李颖, 李琪. 利用交叉验证的小麦LAI反演模型研究. 国土资源遥感, 2015, 27(4): 34-40.
REN Z, CHEN H L, WANG L X, LI Y, LI Q. Research on inversion model of wheat LAI using cross-validation. Remote Sensing for Land and Resources, 2015, 27(4): 34-40. (in Chinese)
[30] LELONG C, BURGER P, JUBELIN G, ROUX B, LABBE S, BARET F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors, 2008, 8(5): 3557-3585.
[31] POTITHEP S, NAGAI S, NASAHARA K, SUZUKI R. Two separate periods of the LAI-VIs relationships using in situ measurements in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 2013, 169(5): 148-155.
[32] INOUE Y, GUERIF M, BARET F, SKIDMORE A K, GITELSON A A, SCHLERF M, DARVISHZADEH R, OLIOSO A. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant, Cell and Environment, 2016, 39(3): 2609-2623.
[33] BREIMAN L. Random forests. Machine Learning, 2001, 45(1): 5-32.
[34] 杨福芹, 冯海宽, 李振海, 高林, 杨贵军, 戴华阳. 基于赤池信息量准则的冬小麦叶面积指数高光谱估测. 农业工程学报, 2016, 32(3): 163-168.
YANG F Q, FENG H K, LI Z H, GAO L, YANG G J, DAI H Y. Hyperspectral estimation of leaf area index for winter wheat based on Akaike’s information criterion. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 163-168. (in Chinese)
[35] 王丽爱, 马昌, 周旭东, 訾妍, 朱新开, 郭文善.基于随机森林回归算法的小麦叶片SPAD值遥感估算. 农业机械学报, 2015, 46(1): 259-265.
WANG L A, MA C, ZHOU X D, ZI Y, ZHU X K, GUO W S. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265. (in Chinese)
[36] GONG P, WANG D X, LIANG S. Inverting a canopy reflectance model using a neural network. International Journal of Remote Sensing, 1999, 20(1): 111-122.
[37] 岳继博, 杨贵军, 冯海宽. 基于随机森林算法的冬小麦生物量遥感估算模型对比. 农业工程学报, 2016, 32(18): 175-182.
YUE J B, YANG G J, FENG H K. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 175-182. (in Chinese)
[38] AASEN H, BURKART A, BOLTEN A. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108(5): 245-259.
[39] YUE J B, YANG G J, LI C C, LI Z H, WANG Y J, FENG H K, XU B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 2017, 9(7): 708-727.
[40] 秦占飞, 常庆瑞, 谢宝妮, 申健. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测. 农业工程学报, 2016, 32(23): 77-85.
QIN Z F, CHANG Q R, XIE B N, SHEN J. Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 77-85. (in Chinese) |