中国农业科学 ›› 2021, Vol. 54 ›› Issue (6): 1092-1103.doi: 10.3864/j.issn.0578-1752.2021.06.002
收稿日期:
2020-07-28
接受日期:
2020-09-27
出版日期:
2021-03-16
发布日期:
2021-03-25
通讯作者:
司红起,马传喜
作者简介:
陈璨,E-mail:基金资助:
Can CHEN(),NanNan HAN(),Yang LIU,XiaoWei SHI,HongQi SI(),ChuanXi MA()
Received:
2020-07-28
Accepted:
2020-09-27
Online:
2021-03-16
Published:
2021-03-25
Contact:
HongQi SI,ChuanXi MA
摘要:
【目的】基因拷贝数变异是一种常见又重要的基因结构变异,往往影响个体表型。低分子量麦谷蛋白(low-molecular-weight glutenin subunit,LMW-GS)是小麦贮藏蛋白的主要组成部分,位于Glu-3位点。小麦作为异源六倍体,其庞大且复杂的基因组结构导致难以利用传统方法检测目的基因的拷贝数,针对小麦基因组,筛选可靠稳定的内参基因和体系,探索适合复杂基因组的拷贝数变异测定技术,测定Glu-3位点LWM-GS基因拷贝数。【方法】以Acc1为内参基因,根据基因序列设计内参引物和探针,通过定性和定量PCR测定内参基因在12个普通小麦品种中的拷贝数,分析该基因拷贝数在不同品种间的稳定性;又以小麦品种篙优2018的5个稀释浓度的基因组DNA为模板,利用qRT-PCR验证Acc1内参系统的重复性和准确性;根据Glu-A3位点LMW-GS基因序列设计特异性引物及探针,利用qRT-PCR和ddPCR 2种方法检测8个小麦品种Glu-A3位点基因拷贝数,比较后选择更优的高通量基因拷贝数检测方法;再根据Glu-B3和Glu-D3位点LMW-GS基因序列设计相应的特异性引物及探针,并利用ddPCR技术检测和分析了231份小麦品种的Glu-A3、Glu-B3和Glu-D3位点上LMW-GS基因拷贝数。【结果】Acc1在12个普通小麦品种间、同一品种5个DNA稀释浓度间的拷贝数测定结果一致,技术重复间的变异系数仅为0.07%—0.77%,所构建的Acc1内参系统稳定;比较qRT-PCR和ddPCR 2种拷贝数检测方法,8个品种所测的Glu-A3位点拷贝数结果一致,分别为3、5、3、4、3、3、3和3;且ddPCR检测重复间的变异系数为0.30%—1.67%,远低于qRT-PCR的3.14%—12.72%,更加可靠;利用ddPCR对231份普通小麦品种的Glu-A3、Glu-B3和Glu-D3位点上LMW-GS基因拷贝检测后分析发现,大多数小麦品种在3个位点上的拷贝数为4,所占频率分别为51.95%、32.03%和28.57%,Glu-3位点总拷贝数变异范围为10—21,变异系数为16.12%。【结论】Acc1内参系统具有良好的稳定性和重复性,可以用作小麦Glu-3位点和其他目的基因拷贝数检测的内参;qRT-PCR和ddPCR均可用于小麦基因拷贝数的检测,但后者更稳定、可靠,且操作简单、检测通量高。
陈璨,韩南南,刘洋,史晓维,司红起,马传喜. 小麦Glu-3位点基因拷贝数的变异分析[J]. 中国农业科学, 2021, 54(6): 1092-1103.
Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat[J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
表1
特异性引物和探针"
引物/探针名称 Primer/probe name | 序列 Sequence (5′-3′) | 退火温度 Annealing temperature (℃) |
---|---|---|
Glu-A3F | AGCAATCCCGCCATGAGTCA | 60 |
Glu-A3R | AGTGGTGGTTTCGTACAACG | |
Glu-A3T | AATGTGTCTCCCAACCCCAACAGCAG | |
Glu-B3F | CAAGTCATCTTTAGCAAGCATCAGG | 59 |
Glu-B3R | AAGGTCTTCATGGTGGACTAGTGTT | |
Glu-B3T | ATAGTAGCCAGGGCACCACCTCTTT | |
Glu-D3F | ACTAATCGAGCATATCCTAA | 51 |
Glu-D3R | GTTACATTGGGTTAGGTTT | |
Glu-D3T | AGCCTATACAAGGTTCCAAACTCGG | |
Acc1F | GCAATGTAGCTGCGCTTCAC | |
Acc1R | CCTGCAACCGTGGATTAAGT | |
T-Acc1 | ACAGTAGCAGCACCAACATAACCCACAGC |
表2
内参基因重复性检测Ct值变化情况"
DNA浓度 DNA concentration (ng·μL-1) | Ct值 Ct value | 平均值 Average value | 标准差 Standard deviation | 方差 Variance | 变异系数 Coefficient of variation (%) | ||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||
300 | 27.16 | 27.55 | 27.22 | 27.31 | 0.2100 | 0.0441 | 0.77 |
200 | 27.96 | 28.08 | 28.10 | 28.05 | 0.0757 | 0.0057 | 0.27 |
100 | 30.20 | 30.21 | 30.17 | 30.19 | 0.0208 | 0.0004 | 0.07 |
50 | 30.84 | 30.96 | 30.91 | 30.90 | 0.0603 | 0.0036 | 0.20 |
30 | 31.02 | 31.09 | 30.81 | 30.97 | 0.1457 | 0.0212 | 0.47 |
表3
8个不同样品3次重复的Ct值及目的基因拷贝数变化情况"
品种名 Sample | 重复1 Repeat 1 | 重复2 Repeat 2 | 重复3 Repeat 3 | 变异系数 Coefficient of variation | 拷贝数 Copy number | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ct (Glu-A3) | Ct (Acc1) | 3X0/R0 | Ct (Glu-A3) | Ct (Acc1) | 3X0/R0 | Ct (Glu-A3) | Ct (Acc1) | 3X0/R0 | |||
烟农15 Yangnong 15 | 27.95 | 28.55 | 2.52 | 28.21 | 28.97 | 2.86 | 27.89 | 28.63 | 2.82 | 6.80 | 3 |
安农92484W Annong 92484W | 26.58 | 27.87 | 4.50 | 26.71 | 27.93 | 4.24 | 26.63 | 27.91 | 4.45 | 3.14 | 5 |
百农64 Bainong 64 | 27.45 | 28.33 | 3.18 | 27.06 | 27.96 | 3.25 | 27.37 | 28.18 | 3.00 | 4.10 | 3 |
小偃6号 Xiaoyan 6 | 27.41 | 28.41 | 3.51 | 27.11 | 28.09 | 3.47 | 27.30 | 28.14 | 3.09 | 6.91 | 4 |
周麦16 Zhoumai 16 | 27.01 | 27.57 | 2.35 | 26.64 | 27.35 | 2.80 | 26.59 | 27.25 | 2.69 | 8.98 | 3 |
02P67 | 26.81 | 27.46 | 2.66 | 26.74 | 27.22 | 2.32 | 26.46 | 27.01 | 2.46 | 6.90 | 3 |
邯郸6172 Handan 6172 | 27.50 | 27.92 | 2.19 | 27.58 | 28.32 | 2.83 | 27.52 | 28.12 | 2.53 | 12.72 | 3 |
周麦18 Zhoumai 18 | 27.84 | 28.60 | 2.87 | 27.62 | 28.36 | 2.83 | 27.57 | 28.18 | 2.55 | 6.34 | 3 |
[1] | 赵献林, 夏先春, 刘丽, 何中虎, 孙其信. 小麦低分子量麦谷蛋白亚基及其编码基因研究进展. 中国农业科学, 2007,40(3):440-446. |
ZHAO X L, XIA X C, LIU L, HE Z H, SUN Q X. Review on low molecular weight glutenin subunits and their coding genes. Scientia Agricultura Sinica, 2007,40(3):440-446. (in Chinese) | |
[2] | XIANG L, HUANG L, GONG F Y, LIU J, WANG Y F, JIN Y R, HE Y, HE J S, JIANG Q T, ZHENG Y L, LIU D C, WU B H. Enriching LMW-GS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer. 3 Biotech, 2019,9(10):355. |
[3] | HAZARD B, TRAFFORD K, LOVEGROVE A, GRIFFITHS S, UAUY C, SHEWRY P. Strategies to improve wheat for human health. Nature Food, 2020,1(8):475-480. |
[4] | GUPTA R B, SHEPHERD K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theoretical and Applied Genetics, 1990,80(1):65-74. |
[5] | SINGH N K, SHEPHERD K W. Linkage mapping of genes controlling endosperm storage proteins in wheat. Theoretical and Applied Genetics, 1988,75(4):628-641. |
[6] | D'OVIDIO R, MASCI S. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science, 2004,39(3):321-339. |
[7] | CHO K, JO Y M, LIM S H, KIM J Y, HAN O, LEE J Y. Overexpressing wheat low-molecular-weight glutenin subunits in rice (Oryza sativa L. japonica cv. Koami) seeds. 3 Biotech, 2019,9(2):1-8. |
[8] | RAI A, SINGH A M, GANJEWALA D, KUMAR R R, AHLAWAT A K, SINGH S K, SHARMA P, JAIN N. Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India. Journal of Food Science and Technology, 2019,56(4):1696-1707. |
[9] | BEOM H R, KIM J S, JANG Y R, LIM S H, KIM C K, LEE C K, LEE J Y. Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety. 3 Biotech, 2018,8(1):56. |
[10] | SHAW-SMITH C, REDON R, RICKMAN L. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. Journal of Medical Genetics, 2004,41(4):241-248. |
[11] | MARON L G, GUIMARAES C T, KIRST M, ALBERT P S, BIRCHLER J A, BRADBYRY P J, BUCKLER E S, COLUCCIO A E, DANILOVA T V, KUDRNA D, MAGALHAES J V, PINEROS M A, SCHATZ M C, WING R A, KOCHIAN L. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(13):5241-5246. |
[12] | VOGELSTEIN B, KINZLER K W. Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(16):9236-9241. |
[13] | SYKES P J, NEOH S H, BRISCO M J. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992,13(3):444-449. |
[14] | YANG Q, XI J, CHEN X X, HU S H, CHEN N, QIAO S L, WAN S G, BAO D K. The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus. International Journal of Biological Macromolecules, 2017,104(Part A):1223-1228. |
[15] | LIN Q, FU X Z, LIU L H, LIANG H R, NIU Y J, WEN Y Y, HUANG Z B, LI N Q. Development and application of a sensitive droplet digital PCR (ddPCR) for the detection of infectious spleen and kidney necrosis virus. Aquaculture, 2020,529:735697. |
[16] | ANTKOWIAK M, NOWACKA-WOSZUK J, SZCZERBAL I, SWITONSKI M, SZYDLOWSKI M. AMY2B gene copy-number variation studied by droplet digital PCR (ddPCR) in three canids: Red fox, arctic fox, and Chinese raccoon dog. Folia Biologica, 2020,68(2):51-55. |
[17] | KONISHI T, SHINOHARA K, YAMADA K, SASAKI Y. Acetyl-CoA carboxylase in higher plants: Most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant and Cell Physiology, 1996,37(2):117-122. |
[18] | CHEN Q, SONG J, DU W P, XU L Y, JIANG Y, ZHANG J, ZHANG M, YU G R. Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes. Cereal Research Communications, 2018,46(2):191-200. |
[19] | 雷映霞. 鹅观草属及其近缘属物种的分子系统与进化研究[D]. 雅安: 四川农业大学, 2018. |
LEI Y X. Phylogenetic and evolution analysis of Roegneria and its related genera (Triticeae Poaceae)[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese) | |
[20] | GORNICKI P, PODKOWINSKI J, SCAPPINO L A, DIMAIO J, WARD E, HASELKORN R. Wheat acetyl-CoA carboxylase: cDNA and protein structure. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(15):6860-6864. |
[21] | PODKOWINSKI J, SROGA G E, HASELKORN R, GORNICKI P. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(5):1870-1874. |
[22] | GORNICKI P, FARIS J, KING I, PODKOWINSKI J, GILL B, HASELKORN R. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(25):14179-14184. |
[23] | 缪青梅, 汪小福, 陈笑芸, 彭城, 徐晓丽, 魏巍, 徐俊锋. 基于双重微滴数字PCR精准定量转基因水稻G6H1的方法研究. 农业生物技术学报, 2019,27(1):159-169. |
MIAO Q M, WANG X F, CHEN X Y, PENG C, XU X L, WEI W, XU J F. Studies on accurate quantification of genetically modified rice (Oryza sative) G6H1 based on duplex droplet digital PCR. Journal of Agricultural Biotechnology, 2019,27(1):159-169. (in Chinese) | |
[24] | 蔡教英, 姚丽锋, 王小玉, 游淑珠, 丁琦. 基于双重微滴式数字PCR对转基因油菜RF1品系的定量方法. 现代食品科技, 2018,34(6):282-287. |
CAI J Y, YAO L F, WANG X Y, YOU S Z, DING Q. Quantitative analysis of genetically modified rapeseed of RF1 by duplex droplet digital polymerase chain reaction (duplex-ddPCR). Modern Food Science and Technology, 2018,34(6):282-287. (in Chinese) | |
[25] | WENG H B, PAN A H, YANG L T, ZHANG C M, LIU Z L, ZHANG D B. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Molecular Biology Reporter, 2004,22(3):289-300. |
[26] | CAVIGLIA G P, ABATE M L, TANDOI F, CIANCIO A, AMOROSO A, SALIZZONI M, SARACCO G M, RIZZETTO M, ROMAGNOLI R, SMEDILE A. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection. Journal of Hepatology, 2018,69(2):301-307. |
[27] | DYAVAR S R, YE Z, BYRAREDDY S N, SCARSI K K, WINCHESTER L C, WEINHOLD J A, FLETCHER C V, PODANY A T. Normalization of cell associated antiretroviral drug concentrations with a novel RPP30 droplet digital PCR assay. Scientific Reports, 2018,8(1):3626. |
[28] | ELMAHALAWY S T, HALVARSSON P, SKARIN M, HÖGLUND J. Genetic variants in dyf-7 validated by droplet digital PCR are not drivers for ivermectin resistance in Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 2018,8(2):278-286. |
[29] | YU R L, XUAN W J, ZHOU L, LUO Y, LIU X Y, XIONG P W, REN X Y. Detection of HER2 amplification in formalin-fixed paraffin- embedded breast carcinoma tissue with digital PCR using two TFF3 sequences as internal reference. Experimental and Molecular Pathology, 2018,104(3):235-238. |
[30] | 琚鹏举, 孙黛珍, 宁蕾, 葛林豪, 许成杰, 史华伟, 梁凯歌, 马亮, 刘陶然, 陈明. 采用优化的数字PCR方法分析转基因小麦外源基因拷贝数. 中国农业科学, 2020,53(10):1931-1939. |
JU P J, SUN D Z, NING L, GE L H, XU C J, SHI H W, LIANG K G, MA L, LIU T R, CHEN M. Analysis of foreign gene copy number in transgenic wheat by optimized digital PCR. Scientia Agricultura Sinica, 2020,53(10):1931-1939. (in Chinese) | |
[31] | KAUTBALLY S, LEPROPRE S, LERIGOLEUR A, GINION A, BEAULOYE C. Platelet acetyl-coa carboxylase phosphorylation: a risk stratification marker that reveals platelet-lipid interplay in coronary artery disease patients. Archives of Cardiovascular Diseases Supplements, 2019,11(2):185-186. |
[32] | LIDA M, YAMASHIRO S, YAMAKAWA H, HAYAKAWA K, KURIBARA H, KODAMA T, FURUI S, AKIYAMA H, MAITANI T, HINO A. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat. Journal of Agricultural and Food Chemistry, 2005,53(16):6294-6300. |
[33] | SINGH R, DUBEY A K, SANYAL I. Optimisation of adventitious shoot regeneration and agrobacterium-mediated transformation in Canna × Generalis (Canna Lily). Horticultural Plant Journal, 2019,5(1):39-46. |
[34] | YIN Y C, HOU J M, TIAN S K, YANG L, ZHANG Z X, LI W D, LIU Y. Overexpressing chalcone synthase (CHS) gene enhanced flavonoids accumulation in Glycyrrhiza uralensis hairy roots. Botany Letters, 2020,167(2):219-231. |
[35] | YANG L T, DING J Y, ZHANG C M, JIA J W, WENG H B, LIN W X, ZHANG D B. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports, 2005,23(10/11):759-763. |
[36] | WHALE A S, HUGGETT J F, COWEN S, SPEIRS V, SHAW J, ELLISON S, FOY C A, SCOTT D J. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Research, 2012,40(11):e82. |
[37] | 姜羽, 胡佳莹, 杨立桃. 利用微滴数字PCR分析转基因生物外源基因拷贝数. 农业生物技术学报, 2014,22(10):1298-1305. |
JIANG Y, HU J Y, YANG L T. Estimating the exogenous genes copy number of genetically modified organisms by droplet digital PCR. Journal of Agricultural Biotechnology, 2014,22(10):1298-1305. (in Chinese) | |
[38] | GAO F G, PFEIFER E, FARAH H, KARAMPINI E, DUA D, KAMAI N, CANE P, TOBAL K, SETHI T, SPICER J, MCCAUGHAN F. Microdroplet digital PCR: Detection and quantitation of biomarkers in archived tissue and serial plasma samples in patients with lung cancer. Journal of Thoracic Oncology, 2015,10(1):212-217. |
[39] | HINDSON C M, CHEVILLET J R, BRIGGS H A, GALLICHOTTE E N, RUF I K, HINDSON B J, VESSELLA R L, TEWARI M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 2013,10(10):1003-1005. |
[40] | HARBERD N P, BARTELS D, THOMPSON R D. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Molecular and General Genetics, 1985,198(2):234-242. |
[41] | CASSIDY B G, DVORAK J, ANDERSON O D. The wheat low molecular weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics, 1998,96(6/7):743-750. |
[42] | KORBEL J O, KIM P M, CHEN X Y, URBAN A E, WEISSMAN S, SNYDER M, GERSTEIN M B. The current excitement about copy-number variation: how it relates to gene duplications and protein families. Current Opinion in Structural Biology, 2008,18(3):366-374. |
[43] | CHEN C, WANG W, YUAN J X, CHEN J, MOU L M. Analysis of HMW-GS and LMW-GS in spring wheat varieties and key parental materials cultivated in Gansu dryland. Acta Agriculturae Boreali- occidentalis Sinica, 2018,27(11):1598-1605. |
[44] | LI Y Y, XIAO J H, WU J J, DUAN J L, LIU Y, YE X G, ZHANG X, GUO X P, GU Y Q, ZHANG L C, JIA J Z, KONG X Y. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. The New Phytologist, 2012,196(1):282-291. |
[45] | SUTTON T, BAUMANN U, HAYES J E, COLLINS N C, SHI B J, SCHNURBUSCH T, HAY A, MAYO G M, PALLOTTA M A, TESTER M A. Adelaide research and scholarship: boron toxicity tolerance in barley arising from efflux transporter amplification. American Association for the Advancement of Science, 2007,318(5855):1446-1449. |
[46] | FRANCIA E, MORCIA C, PASQUARIELLO M, MAZZAMURRO V, MILC J A, RIZZA F, TERZI V, PECCHIONI N. Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology, 2016,92(1/2):161-175. |
[47] | KNOX A K, DHILLON T, CHENG H M, TONDELLI A, PECCHIONI N, STOCKINGER E J. CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theoretical and Applied Genetics, 2010,121(1):21-35. |
[48] | PEARCE S, ZHU J, BOLDIZSÁR Á, VÁGÚJFALVI A, BURKE A, KIMBERLEY G C, GÁBOR G, DUBCOVSKY J. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theoretical and Applied Genetics, 2013,126(11):2683-2697. |
[49] | AURORA D, MELULEKI Z, ADRIAN S T, PETER L, DAVID A L. Copy number variation affecting the Photoperiod-B1 and Vernalization- A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS ONE, 2012,7(3):e33234. |
[50] | ARMOUR J A, SISMANI C, PATSALIS P C, CROSS G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Research, 2000,28(2):605-609. |
[51] | NITCHER R, DISTELFELD A, TAN C T, YAN L L, DUBCOVSKY J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Molecular Genetics and Genomics, 2013,288(5):261-275. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
|