中国农业科学 ›› 2020, Vol. 53 ›› Issue (20): 4297-4312.doi: 10.3864/j.issn.0578-1752.2020.20.017
• 畜牧·兽医·资源昆虫 • 上一篇
李讨讨1(),王霞1,马友记1,2(),尹德恩1,张勇3,赵兴绪3
收稿日期:
2020-06-01
接受日期:
2020-09-03
出版日期:
2020-10-16
发布日期:
2020-10-26
通讯作者:
马友记
作者简介:
李讨讨,E-mail: 基金资助:
LI TaoTao1(),WANG Xia1,MA YouJi1,2(),YIN DeEn1,ZHANG Yong3,ZHAO XingXu3
Received:
2020-06-01
Accepted:
2020-09-03
Online:
2020-10-16
Published:
2020-10-26
Contact:
YouJi MA
摘要:
【目的】BOLL作为一个RNA结合蛋白,可通过与其他分子相互作用而在精子发生过程中发挥不可或缺的作用。研究旨在分析藏绵羊BOLL的序列特征及其在睾丸中的表达与分布模式,进而探究其表达调控与潜在的生物学功能,以期为进一步解读BOLL在绵羊精子发生中的作用机制提供必要的思路和分子见解。【方法】选取3月龄(性成熟前)、1岁龄(性成熟)和3岁龄(成年)3个关键发育阶段各8只健康的雄性藏绵羊。以睾丸组织总RNA为模板,采用RT-PCR技术克隆藏绵羊BOLL的完整编码序列(coding sequence,CDS)区;通过相关生物信息学软件对BOLL的序列与结构特征及其互作蛋白进行分析;采用实时荧光定量PCR(quantitative real time PCR,qRT-PCR), Western blot和免疫荧光染色法对BOLL在3个发育阶段睾丸组织中的表达和免疫定位特征进行检测;基于课题组前期有关藏绵羊睾丸组织全转录组测序数据,借助相关数据库进行绵羊BOLL的竞争性内源RNA(competing endogenous RNA,ceRNA)调控网络和功能注释分析,并采用qRT-PCR和双荧光素酶报告实验对其表达特征及靶向关系进行验证。【结果】藏绵羊BOLL CDS区全长为888 bp,可编码295个氨基酸,含有由81个氨基酸残基组成的RRM结构域(靠近N端)和25个氨基酸残基组成的DAZ重复基序。绵羊BOLL在不同哺乳物种间(特别是山羊、川南山地黄牛和牦牛)具有高度的序列同源性和进化保守性。BOLL蛋白与10个雄性生殖细胞发育相关蛋白质分子间存在潜在的相互作用。随着年龄的增加,在藏绵羊睾丸中BOLL mRNA的表达持续上调,而其蛋白的表达先上调后下调。BOLL蛋白主要存在于性成熟后(1岁龄和3岁龄)睾丸内的精子细胞中,也在精母细胞和整个发育阶段的精原细胞中有少量分布。qRT-PCR结果显示,与3月龄相比,在1岁龄和3岁龄睾丸中微小RNAs(microRNAs,miRNAs)oar-miR-127-5p、oar-miR-382-5p和oar-miR-760-3p的表达量极显著下调(P<0.01),而长链非编码RNAs(long noncoding RNAs,lncRNAs)LOC105602204、LOC105603195 和LOC105616228以及环状RNAs(circular RNAs,circRNAs)circ-ECT2L和circ-SPHKAP的表达量极显著上调(P<0.01)。oar-miR-127-5p和oar-miR-760-3p明显降低了BOLL 3′UTR野生型的荧光素酶活性,并且oar-miR-760-3p明显降低了野生型Circ-ECT2L和野生型LOC105616228报告基因的荧光素酶活性。【结论】报道了藏绵羊睾丸中BOLL的分子结构特征、表达规律及潜在的表达调控作用。BOLL主要在藏绵羊减数分裂后的圆形和长形精子细胞中表达,并且其表达受到oar-miR-127-5p和oar-miR-760-3p的直接靶向负调控以及oar-miR-760-3p介导的circRNA Circ-ECT2L和lncRNA LOC105616228的正向调控,进而可能与下游信号分子相互作用,以参与调节绵羊精子细胞向成熟精子分化。
李讨讨,王霞,马友记,尹德恩,张勇,赵兴绪. 藏绵羊BOLL的分子特征及其在睾丸中的表达调控与功能分析[J]. 中国农业科学, 2020, 53(20): 4297-4312.
LI TaoTao,WANG Xia,MA YouJi,YIN DeEn,ZHANG Yong,ZHAO XingXu. Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis[J]. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312.
表1
qRT-PCR引物信息"
引物名称 Primer name | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (5′-3′) | 产物长度 Product length(bp) |
---|---|---|---|
BOLL | GGCGCAAACATCAAATCAGAC | GGGCACTCGTTGGGTTATTC | 92 |
β-actin | CTTCCAGCCTTCCTTCCTGG | GCCAGGGCAGTGATCTCTTT | 180 |
LOC105602204 | ATATGACACGACGGGACAGC | CACAACCCGGTGCGTATCTA | 242 |
LOC105603195 | GGGATTTGTCACTGGGCTCT | TGTGTTCTTCCCATTCGCCT | 258 |
LOC105616228 | GTCTGGTCGGGAAATGCTGG | GGGCTCTCGTAAAACCTCCC | 156 |
Circ-ECT2L | AGAGACTCATCTGGGGGTGC | TCTGGTTCGCTTTTCGGCT | 154 |
Circ-SPHKAP | TTATTTCCGAATGCAGCCCC | TCCTCCTTAGTGGTTTCCTTTT | 182 |
oar-miR-760-3p | CGGCTCTGGGTCTGTGGG | Universal reverse* | - |
oar-miR-382-5p | GAAGTTGTTCGTGGTGGATTC | Universal reverse* | - |
oar-miR-127-5p | CTGAAGCTCAGAGGGCTCTG | Universal reverse* | - |
U6 | GGAACGATACAGAGAAGATTAGC | TGGAACGCTTCACGAATTTGCG | - |
图9
潜在调控BOLL的非编码RNAs的时间表达模式及靶向关系验证 A:RNA-Seq(4个生物学重复)和qRT-PCR验证(8个生物学重复组成,每个由3个技术重复组成)获得的非编码RNA表达模式的比较。RNA-seq获得的miRNAs、circRNAs和lncRNAs的表达丰度分别用TPM(每千个碱基的转录每百万映射读取的转录本数)、RPM(每百万映射读取的reads数)和FPKM(每千个碱基的转录每百万映射读取的片段数)衡量。B:双荧光素酶报告法验证miRNAs与BOLL或其ceRNAs的靶向关系。3M:3月龄;1Y:1岁龄;3Y:3岁龄。**:差异极显著(P<0.01);*:差异显著(P<0.05);ns:差异不显著(P>0.05)"
[1] |
XIN G S, LONG R J, GUO X S, IRVINE J, DING L M, DING L L, SHANG Z H. Blood mineral status of grazing Tibetan sheep in the Northeast of the Qinghai-Tibetan Plateau. Livestock Science, 2011,136:102-107. doi: 10.1016/j.livsci.2010.08.007.
doi: 10.1016/j.livsci.2010.08.007 |
[2] |
ZHOU R, WU J, LIU B, JIANG Y, CHEN W, LI J, HE Q, HE Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular Life Sciences, 2019,76(14):2681-2695. doi: 10.1007/s00018-019-03101-9.
pmid: 30980107 |
[3] | 葛少钦, 康现江, 刘桂荣, 穆淑梅. 精子发生过程中的相关基因. 遗传, 2008,30(1):3-12. doi: 10.3724/sp.j.1005.2008.00003. |
GE S Q, KANG X J, LIU G R, MU S M. Genes involved in spermatogenesis. Hereditas (Beijing), 2008,30(1):3-12. (in Chinese) | |
[4] |
CHALMEL F, ROLLAND A. Linking transcriptomics and proteomics in spermatogenesis. Reproduction, 2015,150(5):R149-157. doi: 10.1530/rep-15-0073.
pmid: 26416010 |
[5] |
SEKINé K, FURUSAWA T, HATAKEYAMA M. The boule gene is essential for spermatogenesis of haploid insect male. Developmental Biology, 2015,399(1):154-163. doi: 10.1016/j.ydbio.2014.12.027.
doi: 10.1016/j.ydbio.2014.12.027 pmid: 25592223 |
[6] |
FU X, CHENG S, WANG L, YIN S, DE F M, W S. DAZ family proteins, key players for germ cell development. International Journal of Biological Sciences, 2015,11(10):1226-1235. doi: 10.7150/ijbs.11536.
pmid: 26327816 |
[7] |
AHMADIVAND S, FARAHMAND H, TEIMOORI-TOOLABI L, MIRVAGHEFI A, EAGDERI S, GEERINCKX T, SHOKRPOOR S, RAHMATI-HOLASOO H. Boule gene expression underpins the meiotic arrest in spermatogenesis in male rainbow trout (Oncorhynchus mykiss) exposed to DEHP and butachlor. General and Comparative Endocrinology, 2016,225:235-241. doi: 10.1016/j.ygcen.2015.05.011.
doi: 10.1016/j.ygcen.2015.05.011 pmid: 26027538 |
[8] |
JI M, TANG S, PEI W, NING M, MA Y, LI X, GUAN W. Generation of haploid spermatids from chicken embryonal primordial germ cells. International Journal of Molecular Medicine, 2018,42(1):53-60. doi: 10.3892/ijmm.2018.3602.
doi: 10.3892/ijmm.2018.3602 pmid: 29620249 |
[9] |
VANGOMPEL M, XU E. A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule. Human Molecular Genetics, 2010,19(12):2360-2369. doi: 10.1093/hmg/ddq109.
doi: 10.1093/hmg/ddq109 pmid: 20335278 |
[10] |
GONZáLEZ C, MOVERER L, CALANDRA R, GONZáLEZ- CALVAR S, VITULLO A. Age-related and photoperiodic variation of the DAZ gene family in the testis of the Syrian hamster (Mesocricetus auratus). Zygote, 2018,26(2):127-134. doi: 10.1017/s0967199418000023.
doi: 10.1017/S0967199418000023 pmid: 29573758 |
[11] |
LI M, LIU C, ZHU H, SUN J, YU M, NIU Z, LIU W, PENG S, HUA J. Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs). Journal of Cellular Biochemistry, 2013,114(2):294-302. doi: 10.1002/jcb.24368.
doi: 10.1002/jcb.24368 |
[12] |
ZHANG Q, LI J, LI Q, LI X, LIU Z, SONG D, XIE Z. Cloning and characterization of the gene encoding the bovine BOULE protein. Molecular Genetics and Genomics, 2009,281(1):67-75. doi: 10.1007/s00438-008-0394-6.
doi: 10.1007/s00438-008-0394-6 pmid: 18987886 |
[13] |
SHARMA S, SCHLATT S, VAN P A, NEUHAUS N. Characterization and population dynamics of germ cells in adult macaque testicular cultures. PLoS One, 2019,14(6):e0218194. doi: 10.1371/journal.pone.0218194.
doi: 10.1371/journal.pone.0218194 pmid: 31226129 |
[14] |
KOSTOVA E, YEUNG C, LUETJENS C, BRUNE M, NIESCHLAG E, J G. Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Molecular Human Reproduction, 2007,13(2):85-93. doi: 10.1093/molehr/gal101.
doi: 10.1093/molehr/gal101 pmid: 17114206 |
[15] |
KEE K, ANGELES V, FLORES M, NGUYEN H, REIJO PERA R. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 2009,462(7270):222-225. doi: 10.1038/nature08562.
doi: 10.1038/nature08562 pmid: 19865085 |
[16] | ABOFOUL-AZAB M, LUNENFELD E, LEVITAS E, ZEADNA A, YOUNIS J, BAR-AMI S, HULEIHEL M. Identification of premeiotic, meiotic, and postmeiotic cells in testicular biopsies without sperm from Sertoli cell-only syndrome patients. International Journal of Molecular Sciences, 2019,20(3):470. doi: 10.3390/ijms20030470. |
[17] |
XU E, LEE D, KLEBES A, TUREK P, KORNBERG T, REIJO PERA R. Human BOULE gene rescues meiotic defects in infertile flies. Human Molecular Genetics, 2003,12(2):169-175. doi: 10.1093/hmg/ddg017.
pmid: 12499397 |
[18] |
LIN Y, KUO P, LIN Y, TENG Y, LIN J S N. Messenger RNA transcripts of the meiotic regulator BOULE in the testis of azoospermic men and their application in predicting the success of sperm retrieval. Human Reproduction, 2005,20(3):782-788. doi: 10.1093/humrep/deh647.
doi: 10.1093/humrep/deh647 |
[19] |
ZHANG X, YU S, YANG Q, WANG K, ZHANG S, PAN C, YAN H, DANG R, LEI C, CHEN H, LAN X. Goat Boule: Isoforms identification, mRNA expression in testis and functional study and promoter methylation profiles. Theriogenology, 2018,116:53-63. doi: 10.1016/j.theriogenology.2018.05.002.
doi: 10.1016/j.theriogenology.2018.05.002 pmid: 29778921 |
[20] |
LI B, NGO S, WU W, XU H, XIE Z, LI Q, PAN Z. Identification and characterization of yak (Bos grunniens) b-Boule gene and its alternative splice variants. Gene, 2014,550(2):193-199. doi: 10.1016/j.gene.2014.08.028.
pmid: 25149018 |
[21] |
CASSOLA A, NOé G, FRASCH A. RNA recognition motifs involved in nuclear import of RNA-binding proteins. RNA Biology, 2010,7(3):339-344. doi: 10.4161/rna.7.3.12087.
doi: 10.4161/rna.7.3.12087 pmid: 20458169 |
[22] |
YEN P, CHAI N, SALIDO E. The human DAZ genes, a putative male infertility factor on the Y chromosome, are highly polymorphic in the DAZ repeat regions. Mammalian Genome, 1997,8(10):756-759. doi: 10.1007/s003359900560.
doi: 10.1007/s003359900560 pmid: 9321470 |
[23] |
EWIS A, LEE J, KUROKI Y, SHINKA T, NAKAHORI Y. Yfm1, a multicopy marker specific for the Y chromosome and beneficial for forensic, population, genetic, and spermatogenesis-related studies. Journal of Human Genetics, 2002,47(10):523-528. doi: 10.1007/ s100380200078.
doi: 10.1007/s100380200078 pmid: 12376741 |
[24] |
JIN F, HAMADA M, MALUREANU L, JEGANATHAN K, ZHOU W, MORBECK D, VAN DEURSEN J. Cdc20 is critical for meiosis I and fertility of female mice. Plos Genetics, 2010,6(9):e1001147. doi: 10.1371/journal.pgen.1001147.
doi: 10.1371/journal.pgen.1001147 pmid: 20941357 |
[25] |
CHEN Y, LI X, LIAO H, LEUNG X, HE J, WANG X, LI F, YUE H, XU W. CFTR mutation compromises spermatogenesis by enhancing miR-15b maturation and suppressing its regulatory target CDC25A. Biology of Reproduction, 2019,101(1):50-62. doi: 10.1093/biolre/ioz062.
doi: 10.1093/biolre/ioz062 pmid: 30985893 |
[26] | 周阳, 骆骅, 李伯江, 贾超, 谢庄, 赵兴波, 钟金城, 李齐发. 牦牛和犏牛睾丸组织DDX4基因mRNA表达水平与启动子区甲基化. 中国农业科学, 2013,46(3):630-638. doi: 10.3864/j.issn.0578-1752.2013.03.020. |
ZHOU Y, LUO H, LI B J, JIA C, XIE Z, ZHAO X B, ZHONG J C, LI Q F. mRNA expression level and promoter methylation of DDX4 gene in testes of yak and cattle-yak. Scientia Agricultura Sinica, 2013,46(3):630-638. (in Chinese) | |
[27] |
IKE A, YAMADA S, TANAKA H, NISHIMUNE Y, NOZAKI M. Structure and promoter activity of the gene encoding ornithine decarboxylase antizyme expressed exclusively in haploid germ cells in testis (OAZt/Oaz3). Gene, 2002,298(2):183-193. doi: 10.1016/s0378-1119(02)00978-2.
doi: 10.1016/s0378-1119(02)00978-2 pmid: 12426106 |
[28] |
SOUSA MARTINS J, LIU X, OKE A, ARORA R, FRANCIOSI F, VIVILLE S, LAIRD D, FUNG J, CONTI M. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. Journal of Cell Science, 2016,129(6):1271-1282. doi: 10.1242/jcs.179218.
doi: 10.1242/jcs.179218 pmid: 26826184 |
[29] |
TAY J, RICHTER J. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Developmental Cell, 2001,1(2):201-213. doi: 10.1016/s1534-5807(01)00025-9.
doi: 10.1016/s1534-5807(01)00025-9 pmid: 11702780 |
[30] |
SAITO M, KUMAMOTO K, ROBLES A, HORIKAWA I, FURUSATO B, OKAMURA S, GOTO A, YAMASHITA T, NAGASHIMA M, LEE T, BAXENDALE V, RENNERT O, TAKENOSHITA S, YOKOTA J, SESTERHENN I, TRIVERS G, HUSSAIN S, HARRIS C. Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PloS One, 2010,5(11):e15541. doi: 10.1371/journal.pone.0015541.
doi: 10.1371/journal.pone.0015541 pmid: 21124965 |
[31] |
RICHBURG J, MYERS J, BRATTON S. The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Seminars in Cell Developmental Biology, 2014,30:27-35. doi: 10.1016/j.semcdb.2014.03.001.
pmid: 24632385 |
[32] | SHENG K, LIANG X, HUANG S, XU W. The role of histone ubiquitination during spermatogenesis. BioMed Research International, 2014,2014:870695. doi: 10.1155/2014/870695. |
[33] |
LOVELAND K, MAJOR A, BUTLER R, YOUNG J, JANS D, MIYAMOTO Y. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian Journal of Andrology, 2015,17(4):537-544. doi: 10.4103/1008-682x.154310.
doi: 10.4103/1008-682X.154310 pmid: 25994647 |
[34] |
BERKOVITS B, WANG L, GUARNIERI P, WOLGEMUTH D. The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3'-UTR truncation in round spermatids. Nucleic Acids Research, 2012,40(15):7162-7175. doi: 10.1093/nar/gks342.
doi: 10.1093/nar/gks342 pmid: 22570411 |
[35] |
LI M, YU M, LIU C, ZHU H, HUA J. Expression of miR-34c in response to overexpression of Boule and Stra8 in dairy goat male germ line stem cells (mGSCs). Cell Biochemistry and Function, 2013,31(4):281-288. doi: 10.1002/cbf.2970.
doi: 10.1002/cbf.2970 |
[36] | LI T, WANG X, ZHANG H, CHEN Z, ZHAO X, MA Y. Histomorphological comparisons and expression patterns of BOLL gene in sheep testes at different development stages. Animals, 2019,9(3):105. doi: 10.3390/ani9030105. |
[37] | GONZALEZ C, DORFMAN V, VITULLO A. IGF1 regulation of BOULE and CDC25A transcripts via a testosterone-independent pathway in spermatogenesis of adult mice. Reproductive Biology, 2015,15(1):48-55. doi: 10.1016/j.repbio.2014.10.003. |
[38] |
MIAO X, LUO Q, ZHAO H, QIN X. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep. Scientific Reports, 2016,6:35299. doi: 10.1038/srep35299.
doi: 10.1038/srep35299 pmid: 27731399 |
[39] |
SANTOS R, MORENO C, ZHANG W. Non-coding RNAs in lung tumor initiation and progression. International Journal of Molecular Sciences, 2020,21(8):2774. doi: 10.3390/ijms21082774.
doi: 10.3390/ijms21082774 |
[40] |
陈瑞, 于帅, 陈晓旭, 杜健, 朱振东, 潘传英, 曾文先. 非编码RNA对哺乳动物精子发生过程的调控. 中国农业科学, 2017,50(2):380-390. doi: 10.3864/j.issn.0578-1752.2017.02.016.
doi: 10.3864/j.issn.0578-1752.2017.02.016 |
CHEN R, YU S, CHEN X X, DU J, ZHU Z D, PAN C Y, ZENG W X. Regulatory role of noncoding rnas during spermatogenesis. Scientia Agricultura Sinica, 2017,50(2):380-390. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.02.016 |
|
[41] |
CAI Y, LEI X, CHEN Z, MO Z. The roles of cirRNA in the development of germ cells. Acta Histochemica, 2020,122(3):151506. doi: 10.1016/j.acthis.2020.151506.
doi: 10.1016/j.acthis.2020.151506 pmid: 32008790 |
[42] |
TAKEDA Y, MISHIMA Y, FUJIWARA T, SAKAMOTO H, INOUE K. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PloS One, 2009,4(10):e7513. doi: 10.1371/journal.pone.0007513.
doi: 10.1371/journal.pone.0007513 pmid: 19838299 |
[1] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[2] | 蒋琪琪,许建建,苏越,张琦,曹鹏,宋晨虎,李中安,宋震. 柑橘黄化花叶病毒侵染性克隆构建及应用[J]. 中国农业科学, 2022, 55(24): 4840-4850. |
[3] | 李雨泽,朱嘉伟,林蔚,蓝茉莹,夏黎明,张艺粒,罗聪,黄桂香,何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选[J]. 中国农业科学, 2022, 55(24): 4912-4926. |
[4] | 张冯禧,肖琦,朱家平,尹力鸿,赵霞玲,严明帅,徐晋花,温立斌,牛家强,何孔旺. 非洲猪瘟病毒P30蛋白单克隆抗体制备、鉴定及阻断ELISA方法的建立[J]. 中国农业科学, 2022, 55(16): 3256-3266. |
[5] | 魏天,王成宇,王凤杰,李忠鹏,张芳毓,张守峰,扈荣良,吕礼良,王永志. 非洲猪瘟病毒p30蛋白单克隆抗体制备及线性抗原表位定位[J]. 中国农业科学, 2022, 55(15): 3062-3070. |
[6] | 李正刚,汤亚飞,佘小漫,于琳,蓝国兵,何自福. 侵染萝卜的油菜花叶病毒广东分离物分子特征及其致病性分析[J]. 中国农业科学, 2022, 55(14): 2752-2761. |
[7] | 段雅如,高美玲,郭宇,梁晓雪,刘秀杰,徐洪国,刘继秀,高越,栾非时. 西瓜果形基因图位克隆及分子标记开发[J]. 中国农业科学, 2022, 55(14): 2812-2824. |
[8] | 渠成,王然,李峰奇,罗晨. 烟粉虱味觉受体基因BtabGR1和BtabGR2的克隆与表达模式分析[J]. 中国农业科学, 2022, 55(13): 2552-2561. |
[9] | 张莉,张楠,江虎强,吴帆,李红亮. 中华蜜蜂NPC2基因家族克隆及表达模式分析[J]. 中国农业科学, 2022, 55(12): 2461-2471. |
[10] | 郭丰辉,丁勇,纪磊,李贤松,李西良,侯向阳. 羊草克隆后代对刈割处理的响应[J]. 中国农业科学, 2022, 55(11): 2257-2264. |
[11] | 梁雨欣,吴建祥,李小宇,张春雨,侯吉超,周雪平,王永志. 马铃薯Y病毒衣壳蛋白抗原表位分析及其快速ELISA检测方法的建立[J]. 中国农业科学, 2021, 54(6): 1154-1162. |
[12] | 王嘉琪,董育红,姜菊玲,钱建宁,魏文涛,宋国亮,焦金波,关新新,姬郭彪,张业炘. 基于PK15细胞的猪圆环病毒2型全悬浮培养工艺[J]. 中国农业科学, 2021, 54(6): 1280-1287. |
[13] | 张璐,宗亚奇,徐维华,韩蕾,孙浈育,陈朝晖,陈松利,张凯,程杰山,唐美玲,张洪霞,宋志忠. 葡萄Fe-S簇装配基因的鉴定、克隆和表达特征分析[J]. 中国农业科学, 2021, 54(23): 5068-5082. |
[14] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[15] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
|