中国农业科学 ›› 2022, Vol. 55 ›› Issue (14): 2812-2824.doi: 10.3864/j.issn.0578-1752.2022.14.011
段雅如1(),高美玲1,2(),郭宇1,梁晓雪1,刘秀杰3,徐洪国1,刘继秀3,高越3,栾非时4
收稿日期:
2021-11-03
接受日期:
2022-02-03
出版日期:
2022-07-16
发布日期:
2022-07-26
通讯作者:
高美玲
作者简介:
段雅如,E-mail: 基金资助:
DUAN YaRu1(),GAO MeiLing1,2(),GUO Yu1,LIANG XiaoXue1,LIU XiuJie3,XU HongGuo1,LIU JiXiu3,GAO Yue3,LUAN Feishi4
Received:
2021-11-03
Accepted:
2022-02-03
Online:
2022-07-16
Published:
2022-07-26
Contact:
MeiLing GAO
摘要:
【目的】基于GBS(Genotyping-by-sequencing)高密度遗传图谱初步定位结果,通过图位克隆方法对西瓜果形基因进行精细定位,并开发功能性分子标记,有助于全面研究果形基因的功能及分子标记辅助选择育种。【方法】利用114份纯合西瓜品系全基因组重测序数据及其果形指数表型进行GWAS(genome-wide association study)分析,结合GBS高密度遗传图谱初步定位结果确定果形基因候选区段,以商业小型西瓜品种纯化所得品系K2(椭圆形、FSI=1.54±0.13)和L1(圆形、FSI=1.11±0.07)为材料构建F2群体,通过开发分子标记对果形基因ClFSI进行精细定位,根据西瓜参考基因组‘97103’v1注释信息确定候选基因,并通过实时荧光定量PCR(qRT-PCR)进行验证。【结果】利用1 152份F2群体,最终将ClFSI精细定位于3号染色体的FMFSI-1与FMFSI-2标记之间物理距离约63 kb区间内,共包含5个注释基因。其中Cla011257属于已报道与控制果实纵径和果形相关的SUN基因家族。经测序分析发现,西瓜椭圆形品系K2在该基因第3外显子上存在两个非同义突变位点Chr3:26846636 G-A和Chr3:26847041 G-A(‘97103’v1),分别导致天冬酰胺(Asn)替换为天冬氨酸(Asp)和谷氨酸(Glu)替换为赖氨酸(Lys),并利用Chr3:26847041突变位点开发功能性分子标记FSICAPS-2。qRT-PCR分析表明,K2(椭圆形)与Charleston Gray(细长形)中候选基因表达量无显著性差异,但均显著高于L1(圆形)。【结论】本研究将控制西瓜果形的ClFSI精细定位于3号染色体63 kb区间内,推测Cla011257为最终目的基因,Chr3:26847041和Chr3:26846636突变位点是导致果形不同程度伸长的重要位点,并开发了可以同时鉴定Cla011257多种突变类型的功能标记FSICAPS-2。
段雅如,高美玲,郭宇,梁晓雪,刘秀杰,徐洪国,刘继秀,高越,栾非时. 西瓜果形基因图位克隆及分子标记开发[J]. 中国农业科学, 2022, 55(14): 2812-2824.
DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene[J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
表1
候选基因克隆的引物信息"
引物名称Primer name | 正向序列 Forward primer | 反向序列 Reverse primer | 产物长度 Product length (bp) |
---|---|---|---|
FSIgene-1 | GGACTCAATTTGTAGAGCATGG | AAGAACGCAGTGATGAGCAA | 460 |
FSIgene-2 | TCGAGTTTGCTCATCACTGC | CGGAATTAAGCGACGACCTA | 463 |
FSIgene-3 | TCCGGCAATCTGGGATTT | ATTAGGCGAGGAAAGCACTG | 556 |
FSIgene-4 | CAGTGCTTTCCTCGCCTAAT | GAAAAATGGGGAGAGCAACC | 547 |
表3
果实形状相关表型数据统计"
性状 Trait | K2 (n=20) | L1 (n=20) | F1 (n=20) | 2016F2 | |||
---|---|---|---|---|---|---|---|
均值±标准差 Mean±SD | 均值±标准差 Mean±SD | 均值±标准差 Mean±SD | 均值±标准差 Mean±SD | 范围 Range | 峰度 Kurtosis | 偏度 Skewness | |
果实纵径 Fruit length (cm) | 20.4±3.0A | 15.3±2.4B | 19.3±2.6A | 16.2±2.6 | 10.8-23.6 | -0.18 | 0.40 |
果实横径 Fruit width (cm) | 13.3±1.5b | 13.8±1.8b | 15.4±1.3a | 13.6±1.2 | 9.7-18.5 | -0.42 | 0.16 |
果形指数 Fruit shape index (cm) | 1.54±0.13A | 1.11±0.07B | 1.26±0.22B | 1.20±0.20 | 0.92-1.77 | 0.27 | 1.09 |
表5
精细定位所用 KAPS 引物信息"
引物名称 Primer name | 物理位置(V1) Physical position | 变异位点 Variation locus | 引物序列 Pprimer sequence (5' to 3') | |
---|---|---|---|---|
FMFSI-3 | chr3-26695927 | C/A | Fa: GAAGGTGACCAAGTTCATGCTGTAAGAACAGCCAAATGTTGAACAAATC | |
Fb: GAAGGTCGGAGTCAACGGATTTTGTAAGAACAGCCAAATGTTGAACAAATA | ||||
R: CAAGACAGTGATCTTTTCACAACACAATAATT | ||||
FMFSI-4 | chr3-26775520 | G/C | Fa: GAAGGTGACCAAGTTCATGCTGTAATAAATGTGGAGGAAATATGGCTAC | |
Fb: GAAGGTCGGAGTCAACGGATTGTAATAAATGTGGAGGAAATATGGCTAG | ||||
R: TAACCATTTACTTTTTTGGTTTTGGTTTTTGAAAA | ||||
FMFSI-1 | chr3-26801978 | C/T | Fa: GAAGGTGACCAAGTTCATGCTACACATTCTAATGCCCTAGTTAGTAC | |
Fb: GAAGGTCGGAGTCAACGGATTCACACATTCTAATGCCCTAGTTAGTAT | ||||
R: TTGGATCATCGAATTTTATGAACACTCCTAT |
表6
精细定位所用CAPS、dCAPS 引物信息"
引物名称 Primer name | 物理位置(V1) Physical position | 变异位点 Variation locus | 正向序列 Forward sequence | 反向序列 Reverse sequence | 限制性内切酶Restriction endonuclease |
---|---|---|---|---|---|
GFSI-1 | chr3-26846636 | C/T | AGACTACTTCTCGATTCCATGAATT | CGGAATTTCCATGACTCTGA | EcoR I (dCPAS) |
FSICAPS-2 | chr3-26847041 | C/T | ACCGCCAGAGTTCACAAATC | ATTAGGCGAGGAAAGCACTG | Taq I |
FM-FSI-2 | chr3-26864789 | C/G | AATTGATGGGGGTATCGTGA | TGGTTGGGGTTATTTGGGTA | Rsa I |
CW3CAPS47 | chr3-26882166 | T/G | GAACCAATACCAACGGGAAT | TGCATGAGCCAAAATTCACT | Xho I |
CHR3-FSI-3 | chr3-26940134 | T/C | CTTTGAAGTTCGGAGGTTGG | ATGGATCAAACAGACGCAAA | Taq I |
CHR3-FSI-5 | chr3-26945758 | A/G | CCAAGCAGGCCAAATAACAT | GCCAAATTTTCGAAGCACAG | Hind II |
CHR3-FSI-7 | chr3-27106460 | G/A | CAAAAGCCTCCAAGTTCCAG | AAGCTGGTGGTCTTGGTTTG | Taq I |
CHR3-FSI-11 | chr3-27121470 | C/T | TTGATCGCTGGAGATGAATG | GCATCGGTTTTGGAAGGATA | Hind III |
表7
候选区段内的预测基因信息"
编号 No. | 基因号 Gene ID | 基因功能 Gene function | 基因位置 Region in ‘97103’ v1 |
---|---|---|---|
1 | Cla011252 | 低温诱导蛋白 Cold induced protein like (AHRD V1 *---Q94JH8_ORYSJ) | Chr3: 26806979-26807611 (+strand) 633 bp |
2 | Cla011253 | 精氨酸tRNA合成酶 Arginine tRNA synthetase (AHRD V1 **** O23247_ARATH); 含有Interpro结构域IPR001278 Contains interpro domains IPR001278,精氨酸tRNA合成酶 Arginine tRNA synthetase,IC类 Class IC | Chr3: 26809083-26816437 (-strand) 7355 bp |
3 | Cla011254 | 未知蛋白质 Unknown protein (AHRD V1) | Chr3: 26819389-26819613 (+strand) 225 bp |
4 | Cla011255 | 激酶家族蛋白 Kinase family proteins (AHRD V1 ***-D7MCM2_ARALL);含有Interpro结构域IPR002290 Contains interpro domains IPR002290,丝氨酸/苏氨酸蛋白激酶 Serine/ Threonine protein kinase | Chr3: 268219 46-26833394 (+strand) 11449 bp |
5 | Cla011256 | 果胶酯酶 Pectin esterase (AHRD V1 ***-B9RKG6_RICCO);含有Interpro结构域IPR000070 Contains interpro domains IPR000070,果胶酯酶 Pectin esterase,具有催化作用 With catalysis | Chr3: 26838409-26839804 (+strand) 1396 bp |
6 | Cla011257 | 钙调素结合家族蛋白 Calmodulin binding family proteins (AHRD V1 **-* Q9ZU28_ ARATH);含有Interpro域IPR000048 IQ Contains interpro domains IPR000048 IQ,钙调蛋白结合区 Calmodulin-binding domain | Chr3: 26846490-26847637 (-strand) 1148 bp |
[1] |
HARTMAN J L, PERKINS V P, WEHNER T C. Citrulline and arginine are moderately heritable in two red-fleshed watermelon populations. HortScience, 2019, 54(2): 200-205.
doi: 10.21273/HORTSCI13715-18 |
[2] |
RODRÍGUEZ G R, MUÑOS S, ANDERSON C, SIM S C, MICHEL A, CAUSSE M, GARDENER B B M, FRANCIS D, VAN DER KNAAP E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011, 156(1): 275-285. doi: 10.1104/pp.110.167577.
doi: 10.1104/pp.110.167577 |
[3] |
WANG Y P, CLEVENGER J P, ILLA-BERENGUER E, MEULIA T, VAN DER KNAAP E, SUN L. A comparison of sun, ovate, fs8.1 and auxin application on tomato fruit shape and gene expression. Plant and Cell Physiology, 2019, 60(5): 1067-1081. doi: 10.1093/pcp/pcz024.
doi: 10.1093/pcp/pcz024 |
[4] |
LIU J P, VAN ECK J, CONG B, TANKSLEY S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. PNAS, 2002, 99(20): 13302-13306. doi: 10.1073/pnas.162485999.
doi: 10.1073/pnas.162485999 |
[5] |
XIAO H, JIANG N, SCHAFFNER E, STOCKINGER E J, VAN DER KNAAP E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008, 319(5869): 1527-1530. doi: 10.1126/science.1153040.
doi: 10.1126/science.1153040 |
[6] |
ZHU W Y, HUANG L, CHEN L, YANG J T, WU J N, QU M L, YAO D Q, GUO C L, LIAN H L, HE H L, PAN J S, CAI R. A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 2016, 7: 437. doi: 10.3389/fpls.2016.00437.
doi: 10.3389/fpls.2016.00437 |
[7] | GAO Z H, ZHANG H Y, CAO C X, HAN J, LI H, REN Z H. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horicultural Plant Journal, 2020, 6(3): 132-144. |
[8] |
PAN Y P, LIANG X J, GAO M L, LIU H Q, MENG H W, WENG Y Q, CHENG Z H. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics, 2017, 130(3): 573-586. doi: 10.1007/s00122-016-2836-6.
doi: 10.1007/s00122-016-2836-6 |
[9] |
栾非时, 矫士琦, 盛云燕, 朱子成. 甜瓜果实相关性状QTL分析. 东北农业大学学报, 2017, 48(3): 1-9. doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001.
doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001 |
LUAN F S, JIAO S Q, SHENG Y Y, ZHU Z C. Mapping of QTL for fruit traits in melon. Journal of Northeast Agricultural University, 2017, 48(3): 1-9. doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2017.03.001 |
|
[10] |
王岭, 才羿, 王桂超, 王迪, 盛云燕. 甜瓜SLAF图谱构建及果实相关性状QTL分析. 中国农业科学, 2021, 54(19): 4196-4206. doi: 10.3864/j.issn.0578-1752.2021.19.014.
doi: 10.3864/j.issn.0578-1752.2021.19.014 |
WANG L, CAI Y, WANG G C, WANG D, SHENG Y Y. Specific length amplified fragment (SFLA) sequencing mapping construction and QTL analysis of fruit related traits in muskmelon. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206. doi: 10.3864/j.issn.0578-1752.2021.19.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.19.014 |
|
[11] | WEETMAN L M. Inheritance and correlation of shape, size and color in the watermelon. Iowa agr.expt.sta.res.bul, 1937, 228(2): 342-350. |
[12] | POOLE C F, GRIMBALL P C. Interaction of sex, shape, and weight genes in watermelon. Journal of Agricultural Research, 1944, 71: 533-552. |
[13] | TANAKA T, WIMOL S, MIZUTABI T. Inheritance of fruit shape and seed size of watermelon. Journal of the Japanese Society for Horticultural Science, 1995, 64(3): 543-548. |
[14] | GUNER N, WEHNER T C. The genes of watermelon. Hortscience A Publication of the American Society for Horticultural Science, 2004, 39(6): 1175-1182. |
[15] | LOU L L, WEHNER T C. Qualitative inheritance of external fruit traits in watermelon. Hortence A Publication of the American Society for Horticultural Science, 2016, 51(5): 487-496. |
[16] |
SANDLIN K, PROTHRO J, HEESACKER A, KHALILIAN N, OKASHAH R, XIANG W W, BACHLAVA E, CALDWELL D G, TAYLOR C A, SEYMOUR D K, WHITE V, CHAN E, TOLLA G, WHITE C, SAFRAN D, GRAHAM E, KNAPP S, MCGREGOR C. Comparative mapping in watermelon [Citrullus lanatus (thunb.) matsum. et nakai]. Theoretical and Applied Genetics, 2012, 125(8): 1603-1618. doi: 10.1007/s00122-012-1938-z.
doi: 10.1007/s00122-012-1938-z |
[17] |
CHENG Y, LUAN F S, WANG X Z, GAO P, ZHU Z C, LIU S, BALOCH A M, ZHANG Y S. Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Scientia Horticulturae, 2016, 202: 25-31.
doi: 10.1016/j.scienta.2016.01.004 |
[18] |
REN Y, MCGREGOR C, ZHANG Y, GONG G Y, ZHANG H Y, GUO S G, SUN H H, CAI W T, ZHANG J, XU Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biology, 2014, 14: 33. doi: 10.1186/1471-2229-14-33.
doi: 10.1186/1471-2229-14-33 |
[19] |
REDDY U K, ABBURI L, ABBURI V L, SAMINATHAN T, CANTRELL R, VAJJA V G, REDDY R, TOMASON Y R, LEVI A, WEHNER T C, NIMMAKAYALA P. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. Journal of Heredity, 2014, 106(2): 166-176. doi: 10.1093/jhered/esu077.
doi: 10.1093/jhered/esu077 |
[20] | KIM K H, HWANG J H, HAN D Y, PARY M, KIM S, CHOI D, KIM Y, LEE G P, KIM S T, PARK Y H. major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE, 2015, 10(12): e0145665. |
[21] |
卢丙洋, 周慧文, 陈欣, 栾非时, 王学征, 姜羽. 西瓜果实几个性状的QTL分析. 果树学报, 2016, 33(10): 1206-1218. doi: 10.13925/j.cnki.gsxb.20160002.
doi: 10.13925/j.cnki.gsxb.20160002 |
LU B Y, ZHOU H W, CHEN X, LUAN F S, WANG X Z, JIANG Y. QTL analysis of fruit traits in watermelon. Journal of Fruit Science, 2016, 33(10): 1206-1218. doi: 10.13925/j.cnki.gsxb.20160002. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160002 |
|
[22] |
刘传奇, 高鹏, 栾非时. 西瓜遗传图谱构建及果实相关性状QTL分析. 中国农业科学, 2014, 47(14): 2814-2829. doi: 10.3864/j.issn.0578-1752.2014.14.012.
doi: 10.3864/j.issn.0578-1752.2014.14.012 |
LIU C Q, GAO P, LUAN F S. Construction of a genetic linkage map and QTL analysis of fruit-associated traits in watermelon. Scientia Agricultura Sinica, 2014, 47(14): 2814-2829. doi: 10.3864/j.issn.0578-1752.2014.14.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.14.012 |
|
[23] |
DOU J L, ZHAO S J, LU X, HE N, ZHANG L, ALIi A, KUANG H H, LIU W G. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics, 2018, 131(4): 947-958.
doi: 10.1007/s00122-018-3050-5 |
[24] |
MARAGAL S, RAO E S, LAKSHMANA REDDY D C. Genetic analysis of fruit quality traits in prebred lines of watermelon derived from a wild accession of Citrullus amarus. Euphytica, 2019, 215(12): 1-15. doi: 10.1007/s10681-019-2527-x.
doi: 10.1007/s10681-019-2527-x |
[25] |
LEGENDRE R, KUZY J, MCGREGOR C. Markers for selection of three alleles of ClSUN25-26-27a (Cla011257) associated with fruit shape in watermelon. Molecular Breeding, 2020, 40(2): 1-13. doi: 10.1007/s11032-020-1104-2.
doi: 10.1007/s11032-020-1104-2 |
[26] |
李娜, 尚建立, 李楠楠, 周丹, 孔胜楠, 王吉明, 马双武. 西瓜果实形状的分子精准鉴定. 园艺学报, 2021, 48(7): 1386-1396. doi: 10.16420/j.issn.0513-353x.2021-0152.
doi: 10.16420/j.issn.0513-353x.2021-0152 |
LI N, SHANG J L, LI N N, ZHOU D, KONG S N, WANG J M, MA S W. Accurate molecular identification for fruit shape in watermelon (Citrullus lanatus). Acta Horticulturae Sinica, 2021, 48(7): 1386-1396. doi: 10.16420/j.issn.0513-353x.2021-0152. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0152 |
|
[27] |
NEFF M M, TURK E, KALISHMAN M. Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics, 2002, 18: 613-615.
doi: 10.1016/S0168-9525(02)02820-2 |
[28] |
UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, YE J, FAIRCLOTH B C, REMM M, ROZEN S G. Primer3: new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115. doi: 10.1093/nar/gks596.
doi: 10.1093/nar/gks596 |
[29] |
LI Y H, YANG L M, PATHAK M, LI D W, HE X M, WENG Y Q. Fine genetic mapping of cp: A recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theoretical and Applied Genetics, 2011, 123(6): 973-983. doi: 10.1007/s00122-011-1640-6.
doi: 10.1007/s00122-011-1640-6 |
[30] | SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467. |
[31] |
KONG Q S, YUAN J X, GAO L Y, ZHAO L Q, CHENG F, HUANG Y, BIE Z L. Evaluation of appropriate reference genes for gene expression normalization during watermelon fruit development. PLoS ONE, 2015, 10(6): e0130865. doi: 10.1371/journal.pone.0130865.
doi: 10.1371/journal.pone.0130865 |
[32] |
PAN Y P, WANG Y H, MCGREGOR C, LIU S, LUAN F S, GAO M L, WENG Y Q. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 2020, 133(1): 1-21. doi: 10.1007/s00122-019-03481-3.
doi: 10.1007/s00122-019-03481-3 |
[33] |
CLEVENGER J P, VAN HOUTEN J, BLACKWOOD M, RODRÍGUEZ G R, JIKUMARU Y, KAMIYA Y, KUSANO M, SAITO K, VISA S, VAN DER KNAAP E. Network analyses reveal shifts in transcript profiles and metabolites that accompany the expression of SUN and an elongated tomato fruit. Plant Physiology, 2015, 168(3): 1164-1178. doi: 10.1104/pp.15.00379.
doi: 10.1104/pp.15.00379 |
[34] |
MONFORTE A J, DIAZ A, CAÑO-DELGADO A, VAN DER KNAAP E. The genetic basis of fruit morphology in horticultural crops: Lessons from tomato and melon. Journal of Experimental Botany, 2014, 65(16): 4625-4637. doi: 10.1093/jxb/eru017.
doi: 10.1093/jxb/eru017 |
[35] |
WU S, XIAO H, CABRERA A, MEULIA T, VAN DER KNAAP E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3): 1175-1186. doi: 10.1104/pp.111.181065.
doi: 10.1104/pp.111.181065 |
[36] |
HUANG Z J, HOUTEN J, GONZALEZ G, XIAO H, KNAAP E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics, 2013, 288(3/4): 111-129. doi: 10.1007/s00438-013-0733-0.
doi: 10.1007/s00438-013-0733-0 |
[37] |
JIANG N, GAO D Y, XIAO H, WAN DER KNAAP E. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. The Plant Journal, 2010, 60(1): 181-193.
doi: 10.1111/j.1365-313X.2009.03946.x |
[1] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[2] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[3] | 方桃红,张敏,马春花,郑晓晨,谭文静,田冉,燕琼,周新力,李鑫,杨随庄,黄可兵,王建锋,韩德俊,王晓杰,康振生. 小麦抗条锈基因Yr52在品种改良中的应用[J]. 中国农业科学, 2022, 55(11): 2077-2091. |
[4] | 朱佩佩,罗燚佳,向雯,张明磊,张剑侠. 抗寒无核葡萄杂种胚挽救及分子标记辅助选择[J]. 中国农业科学, 2021, 54(6): 1218-1228. |
[5] | 习玲, 王昱琦, 杨修, 朱微, 陈国跃, 王益, 覃鹏, 周永红, 康厚扬. 243份云南普通小麦地方品种抗条锈病鉴定及分子标记检测[J]. 中国农业科学, 2021, 54(4): 684-695. |
[6] | 陈豆豆, 关利平, 贺亮亮, 宋银花, 章鹏, 刘三军. 葡萄无核基因分子标记的通用性鉴定[J]. 中国农业科学, 2021, 54(22): 4880-4893. |
[7] | 赵立群,邱艳红,张晓飞,刘慧,杨静静,张建,张海军,徐秀兰,温常龙. TaqMan探针法实时荧光定量PCR检测西瓜潜隐病毒[J]. 中国农业科学, 2021, 54(20): 4337-4347. |
[8] | 袁平丽,何楠,赵胜杰,路绪强,朱红菊,刁卫楠,龚成胜,MUHAMMAD Jawad Umer,刘文革. 籽瓜、黏籽和普通西瓜的果实代谢组比较[J]. 中国农业科学, 2021, 54(19): 4179-4195. |
[9] | 刁卫楠,袁平丽,龚成胜,赵胜杰,朱红菊,路绪强,何楠,杨东东,刘文革. 西瓜果肉柠檬黄色的遗传分析和基因定位[J]. 中国农业科学, 2021, 54(18): 3945-3958. |
[10] | 孟君仁,曾文芳,邓丽,潘磊,鲁振华,崔国朝,王志强,牛良. 桃若干重要性状的KASP分子标记开发与应用[J]. 中国农业科学, 2021, 54(15): 3295-3307. |
[11] | 解昆仑,刘莉铭,刘美,彭斌,吴会杰,古勤生. 小西葫芦黄花叶病毒dsRNA的原核表达及其对ZYMV的防治效果[J]. 中国农业科学, 2020, 53(8): 1583-1593. |
[12] | 田晴,高丹美,李慧,刘守伟,周新刚,吴凤芝. 小麦根系分泌物对西瓜连作土壤真菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 1018-1028. |
[13] | 韩光杰,刘琴,李传明,祁建杭,徐彬,陆玉荣,徐健. 稻纵卷叶螟颗粒体病毒的持续感染及检测[J]. 中国农业科学, 2020, 53(19): 3988-3995. |
[14] | 贾姗姗,骆强伟,李莎莎,王跃进. 葡萄胚挽救技术优化及无核和玫瑰香味新种质创制[J]. 中国农业科学, 2020, 53(16): 3344-3355. |
[15] | 牛皓,平俊爱,王玉斌,张福耀,吕鑫,李慧明,楚建强. 基于SSR的光敏型饲草高粱分子辅助育种体系[J]. 中国农业科学, 2020, 53(14): 2795-2803. |
|