中国农业科学 ›› 2020, Vol. 53 ›› Issue (17): 3421-3431.doi: 10.3864/j.issn.0578-1752.2020.17.001
王琴1,2(),刘泽厚1,2,万洪深1,2,魏会廷2,3,龙海4,李涛4,邓光兵4,李俊1,2(
),杨武云1,2(
)
收稿日期:
2019-10-21
接受日期:
2020-02-08
出版日期:
2020-09-01
发布日期:
2020-09-11
通讯作者:
李俊,杨武云
作者简介:
王琴,E-mail:基金资助:
WANG Qin1,2(),LIU ZeHou1,2,WAN HongShen1,2,WEI HuiTing2,3,LONG Hai4,LI Tao4,DENG GuangBing4,LI Jun1,2(
),YANG WuYun1,2(
)
Received:
2019-10-21
Accepted:
2020-02-08
Online:
2020-09-01
Published:
2020-09-11
Contact:
Jun LI,WuYun YANG
摘要:
【目的】小麦穗发芽严重影响小麦产量和品质,是全球小麦生产面临的重大问题之一。通过鉴定挖掘抗穗发芽QTL,聚合穗发芽抗性位点,选育抗穗发芽小麦品种,为四川小麦穗发芽抗性改良提供技术和材料支撑。【方法】以川麦42/川农16重组自交系(RIL,F8)为材料,于2016—2018年分别在2个环境下对RIL群体进行籽粒发芽指数(GI,2016和2018)、籽粒发芽率(GR,2016和2018)和整穗发芽率(SGR,2017和2018)3个穗发芽指标测定。利用90K SNP芯片构建的遗传图谱检测全基因组穗发芽相关QTL,并分析抗性QTL聚合效应。【结果】双亲间GI、GR和SGR指标值差异显著,亲本川农16穗发芽抗性明显优于亲本川麦42。共检测到11个与穗发芽抗性有关的QTL,主要分布在2B、2D、3A、3D、4A、5A、5B和6B染色体上。5B染色体上检测到的单个环境表达的整穗发芽QTL解释的表型变异率最大,达到29%;在2D和3A染色体上检测到的整穗发芽主效QTL,以及5A染色体上检测到的与种子休眠相关的籽粒发芽主效QTL,在2个环境下均能表达,其抗穗发芽等位变异均来源于川农16。基因型分析发现,RIL群体中不同株系聚合抗性QTL的数量变幅为1—9个,表现为抗穗发芽的株系均携带4—9个与穗发芽相关的抗性QTL。重组自交系群体中6个株系GI、GR和SGR值均在15%以下,表现出高抗穗发芽特性;这6个优异株系聚合了多个与穗发芽相关的抗性QTL,且均聚合了川麦42在4A染色体上的微效QTL(QGi.saas-4A和QGr.saas-4A),以及川农16在2D和5B染色体上的主效QTL(QSgr.saas-2D和QSgr.saas-5B);编号为104和125的优异株系已通过审定,定名为川麦104和川麦64。其中,川麦104于2012年同时通过国家和四川省审定,其抗穗发芽能力强,产量、品质、抗病等优良性状突出,聚合了7个正向穗发芽QTL,包括2B、2D和5B染色体上来源于川农16的4个抗性QTL(QGi.saas-2B、QGr.saas-2B、QSgr.saas-2D和QSgr.saas-5B),以及4A和6B染色体上来源于川麦42的3个QTL(QGi.saas-4A、QGr.saas-4A和QGr.saas-6B);近年来,川麦104已成为西南麦区小麦育种的核心亲本,育成小麦品种(系)18个。【结论】共检测到11个抗穗发芽QTL,其中3个来源于川麦42,8个来源于川农16;RIL群体中的抗穗发芽株系均携带4—9个抗性QTL,优异株系川麦104和川麦64高抗穗发芽,均聚合了7个穗发芽抗性QTL。
王琴,刘泽厚,万洪深,魏会廷,龙海,李涛,邓光兵,李俊,杨武云. 川麦42和川农16抗穗发芽QTL定位及聚合效应分析[J]. 中国农业科学, 2020, 53(17): 3421-3431.
WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16[J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
表1
RIL群体及其亲本穗发芽性状参数统计"
性状 Trait | 环境 Environment | 亲本Parents | RIL群体 RIL population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
川麦42 Chuanmai 42 | 川农16 Chuannong 16 | 均值 Mean | 标准差 SD | 最小值 Min | 最大值 Max | 峰度 Kurtosis | 偏度 Skewness | 遗传力Heritability | ||
GI | 2016GH | 0.74 | 0.11** | 0.57 | 0.10 | 0.06 | 0.98 | -0.02 | -0.27 | 0.57 |
2018CD | 0.76 | 0.17** | 0.59 | 0.20 | 0.05 | 0.87 | -0.54 | -0.66 | 0.49 | |
GR | 2016GH | 0.83 | 0.24** | 0.82 | 0.09 | 0.07 | 1.00 | -0.09 | -0.57 | 0.82 |
2018CD | 0.86 | 0.21** | 0.79 | 0.23 | 0.06 | 1.00 | 0.68 | -1.21 | 0.69 | |
SGR | 2017CD | 0.62 | 0.15** | 0.52 | 0.17 | 0.02 | 0.90 | -0.35 | -0.28 | 0.61 |
2018CD | 0.51 | 0.09** | 0.42 | 0.21 | 0.03 | 0.99 | -0.70 | 0.12 | 0.51 |
表3
川麦42/川农16重组自交系群体中检测到的穗发芽相关性状QTL"
性状 Trait | QTL | 环境 Environment | 标记区间 Marker interval | LOD | 贡献率 PVE (%) | 加性效应 Additive effecta |
---|---|---|---|---|---|---|
GI | QGi.saas-2B | 2016GH | IWB217—IWB12070 | 2.64 | 9.47 | 0.05 |
QGi.saas-4A | 2016GH | IWB32870—IWB43187 | 2.50 | 4.28 | -0.03 | |
QGi.saas-5A | 2016GH | IWB22536—IWB43493 | 2.51 | 5.88 | 0.09 | |
2018CD | IWB6853—IWB25919 | 3.98 | 14.72 | 0.13 | ||
GR | QGr.saas-2B | 2016GH | IWB217—IWB12070 | 2.59 | 5.02 | 0.03 |
QGr.saas-4A | 2016GH | IWB32870—IWB43187 | 2.51 | 4.79 | -0.04 | |
QGr.saas-5A | 2016GH | IWB22536—IWB43493 | 2.65 | 4.87 | 0.06 | |
2018CD | IWB6853—IWB25919 | 5.10 | 18.80 | 0.15 | ||
QGr.saas-6B | 2016GR | IWB8673—IWB22066 | 11.02 | 14.26 | -0.05 | |
SGR | QSgr.saas-2D | 2017CD | IWB62848—IWB56618 | 3.29 | 8.06 | 0.05 |
2018CD | IWB9680—IWB62848 | 2.54 | 5.73 | 0.05 | ||
QSgr.saas-3A | 2017CD | IWB10578—IWB30094 | 2.57 | 4.72 | 0.04 | |
2018CD | IWB10578—IWB30094 | 3.60 | 10.86 | 0.07 | ||
QSgr.saas-3D | 2017CD | IWB30686—IWB38826 | 4.69 | 11.96 | 0.06 | |
QSgr.saas-5B | 2018CD | IWB60217—IWB52109 | 12.36 | 29.03 | 0.16 |
表4
6个高抗穗发芽株系携带的抗性QTL"
株系 Lines | GI (%) | GR (%) | SGR (%) | QTL | |||
---|---|---|---|---|---|---|---|
2016GH | 2018CD | 2016GH | 2018CD | 2017CD | 2018CD | ||
12 | 0.14 | 0.12 | 0.12 | 0.15 | 0.07 | 0.05 | QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3A, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B |
74 | 0.13 | 0.10 | 0.13 | 0.15 | 0.02 | 0.03 | QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B |
82 | 0.09 | 0.05 | 0.12 | 0.13 | 0.14 | 0.07 | QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3A, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B |
104 | 0.07 | 0.12 | 0.10 | 0.14 | 0.13 | 0.11 | QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B |
112 | 0.06 | 0.09 | 0.13 | 0.11 | 0.14 | 0.15 | QSgr.saas-2D, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGi.saas-5A, QGr.saas-5A |
125 | 0.08 | 0.10 | 0.07 | 0.11 | 0.09 | 0.07 | QSgr.saas-2D, QSgr.saas-3A, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B |
[1] | 肖世和, 闫长生, 张海萍, 孙果忠. 小麦穗发芽研究. 北京: 中国农业科学技术出版社, 2002. |
XIAO S H, YAN C S, ZHANG H P, SUN G Z. Study Pre-Harvest Sprouting in Wheat. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese) | |
[2] |
DERERA N F, BHATT G M, MCMASTER G J. On the problem of preharvest sprouting of wheat. Euphytica, 1977,26(2):299.
doi: 10.1007/BF00026991 |
[3] |
OGBONNAYA F C, IMTIAZ M, YE G, HEARNDEN P R, HERNANDEZ E, EASTWOOD R F, GINKEL M V, SHORTER S C, WINCHESTER J M. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theoretical and Applied Genetics, 2008,116(7):891-902.
doi: 10.1007/s00122-008-0712-8 pmid: 18368385 |
[4] |
XIAO S H, ZHANG X Y, YAN C S, LIN H. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy. Euphytica, 2002,126(1):35-38.
doi: 10.1023/A:1019679924173 |
[5] |
原亚萍, 陈孝, 肖世和. 小麦穗发芽的研究进展. 麦类作物学报, 2003,23(3):136-139.
doi: 10.7606/j.issn.1009-1041.2003.03.107 |
YUAN Y P, CHEN X, XIAO S H. Advances in the study on wheat pre-harvest sprouting. Journal of Triticeae Crops, 2003,23(3):136-139. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.107 |
|
[6] | 闫长生, 张海萍, 海林, 张秀英, 胡琳, 胡汉桥, 蒲宗君, 肖世和. 中国小麦品种穗发芽抗性差异的研究. 作物学报, 2006,32(4):580-587. |
YAN C S, ZHANG H P, HAI L, ZHANG X Y, HU L, HU H Q, PU Z J, XIAO S H. Differences of preharvest sprouting resistance among Chinese wheat cultivars. Acta Agronomica Sinica, 2006,32(4):580-587. (in Chinese) | |
[7] |
IMTIAZ M, OGBONNAYA F C, OMAN J, GINKEL M V. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008,178(3):1725-1736.
doi: 10.1534/genetics.107.084939 pmid: 18245824 |
[8] | 刘莉, 王庆海, 陈国志. 小麦穗发芽研究进展. 作物杂志, 2013(4):6-11. |
LIU L, WANG Q H, CHEN G Z. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4):6-11. (in Chinese) | |
[9] | ANDERSON J A, SORRELLS M E, TANKSLEY S D. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Science, 1993,33(3):453-459. |
[10] |
ROY J K, PRASAD M, VARSHNEY R K, BALYAN H S, BLAKE T K, DHALIWAL H S, EDWARDS K J, GUPTA P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theoretical and Applied Genetics, 1999,99(1):336-340.
doi: 10.1007/s001220051241 |
[11] |
ARIF M R, NEUMANN K, NAGEL M, KOBILJSKI B, LOHWASSER U, BÖRNER A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 2012,188:409-417.
doi: 10.1007/s10681-012-0705-1 |
[12] |
FLINTHAM J, ADLAM R, BASSOI M, HOLDSWORTH M, GALE M. Mapping genes for resistance to sprouting damage in wheat. Euphytica, 2002,126:39-45.
doi: 10.1023/A:1019632008244 |
[13] |
JAISWAL V, MIR R R, MOHAN A, BALYAN H S, GUPTA P K. Association mapping for pre-harvest sprouting tolerance in common wheat ( Triticum aestivum L.). Euphytica, 2012,188:89-102.
doi: 10.1007/s10681-012-0713-1 |
[14] |
KULWAL P L, SINGH R, BALYAN H S, GUPTA P K. Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Functional & Integrative Genomics, 2004,4(2):94-101.
doi: 10.1007/s10142-004-0105-2 pmid: 14986154 |
[15] |
MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat ( Triticum aestivum L.). Euphytica, 2009,168(3):311-318.
doi: 10.1007/s10681-009-9927-2 |
[16] |
SINGH A K, KNOX R E, CLARKE J M, CLARKE F R, SINGH A, DEPAUW R M, CUTHBERT R D. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. Molecular Breeding, 2014,33(4):919-929.
doi: 10.1007/s11032-013-0006-y |
[17] |
REN X B, LAN X J, LIU D C, WANG J L, LIANG Z Y. Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat × common wheat cross. Journal of Applied Genetics, 2008,49(4):333-341.
doi: 10.1007/BF03195631 |
[18] |
ZHANG X Q, LI C D, TAY A, LANCE R, MARES D, CHEONG J, CAKIR M, MA J H, APPELS R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat ( Triticum aestivum L.). Molecular Breeding, 2008,22(2):227-236.
doi: 10.1007/s11032-008-9169-3 |
[19] |
CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008,21(3):351-358.
doi: 10.1007/s11032-007-9135-5 |
[20] |
SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theoretical and Applied Genetics, 2014,127(8):1843-1855.
doi: 10.1007/s00122-014-2345-4 |
[21] |
WANG X Y, LIU H, MIA M S, SIDDIQUE K H M, YAN G J. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat. Crop and Pasture Science, 2018,69(9):864-872.
doi: 10.1071/CP17423 |
[22] | WANG J R, LIU Y X, WANG Y, CHEN Z H, DAI S, CAO W G, FEDAK G, LAN X J, WEI Y M, LIU D C, ZHENG Y L. Genetic variation of Vp1 in Sichuan wheat accessions and its association with preharvest sprouting response. Genes & Genomics, 2011,33(2):139-146. |
[23] |
NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONO K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT and TFL1 acts in the regulation of germination. The Plant Cell, 2011,23(9):3215-3229.
pmid: 21896881 |
[24] |
LIU S B, SEHGAL S K, LI J R, LIN M, TRICK H N, YU J M, GILL B S, BAI G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics, 2013,195(1):263-273.
pmid: 23821595 |
[25] |
ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes ( TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014,127(4):855-866.
doi: 10.1007/s00122-014-2262-6 pmid: 24452439 |
[26] |
ZHANG Y J, XIA X C, HE Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics, 2016,130(1):81-89.
doi: 10.1007/s00122-016-2793-0 pmid: 27650191 |
[27] |
ZHOU S H, FU L, WU Q H, CHEN J J, CHEN Y X, XIE J Z, WANG Z Z, WANG G X, ZHANG D Y, LIANG Y, ZHANG Y, YOU M S, LIANG R Q, HAN J, LIU Z Y. QTL mapping revealed TaVp-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6. Journal of Integrative Agriculture, 2017,16(2):435-444.
doi: 10.1016/S2095-3119(16)61361-8 |
[28] |
DONG Z D, CHEN J, LI T CHEN F, CUI D Q. Molecular survey of Tamyb10-1 genes and their association with grain color and germinability in Chinese wheat and Aegilops tauschii. Journal of Genetics, 2015,94(3):453-459.
doi: 10.1007/s12041-015-0559-0 pmid: 26440084 |
[29] |
BARRERO J M, CAVANAGH C, VERBYLA K L, TIBBITS J F G, VERBYLA A P, HUANG B. E, ROSEWARNE G M, STEPHEN S, WANG P, WHAN A, RIGAULT P, HAYDEN M J, GUBLER F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biology, 2015,16:93.
pmid: 25962727 |
[30] |
TORADA A, KOIKE M, OGAWA T, TAKENOUCHI Y, TADAMURA K, WU J Z, MATSUMOTO T, KAWAURA K, OGIHARA Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Current Biology, 2016,26(6):782-287.
pmid: 26948878 |
[31] | 李玉营, 马东方, 王晓玲, 方正武. 小麦穗发芽鉴定方法的比较与分析. 广西植物, 2016,36(3):261-266. |
LI Y Y, MA D F, WANG X L, FANG Z W, Comparison and analysis of wheat pre-harvest sprouting screening methods. Guihaia, 2016,36(3):261-266. (in Chinese) | |
[32] |
KULWAL P L, KUMAR N, GAUR A, KHURANA P, KHURANA J P, TYAGI A K, BALYAN H S, GUPTA P K. Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theoretical and Applied Genetics, 2005,111(6):1052-1059.
doi: 10.1007/s00122-005-0021-4 pmid: 16133317 |
[33] |
JIANG Y F, WANG J R, LUO W, WEI Y M, QI P F, LIU Y X, JIANG Q T, PENG Y Y, CHEN G Y, DAI S F, ZHENG Y L, LAN X J. Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat ( Triticum aestivum ssp. tibetanum Shao). . Euphytica, 2015,203(3):557-567.
doi: 10.1007/s10681-014-1266-2 |
[34] |
LIN M, ZHANG D D, LIU S B, ZHANG G R, YU J M, FRITZ A K, BAI G H. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics, 2016,17(1):794-810.
doi: 10.1186/s12864-016-3148-6 pmid: 27729004 |
[35] |
MOHAN A, KULWAL P, SINGH R, KUMAR V, MIR R R, KUMA J, PRASAD M, BALYAN H S, GUPTA P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 2009,168(3):319-329.
doi: 10.1007/s10681-009-9935-2 |
[36] |
GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002,104(1):39-47.
doi: 10.1007/s001220200004 pmid: 12579426 |
[37] |
KUMAR S, KNOX R E, CLARKE F R, POZNIAK C J DEPAUW RM, CUTHBERT R D, FOX S. Maximizing the identification of QTL for pre-harvest sprouting resistance using seed dormancy measures in a white-grained hexaploid wheat population. Euphytica, 2015,205(1):287-309.
doi: 10.1007/s10681-015-1460-x |
[38] |
MARES D J, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005,111(7):1357-1364.
doi: 10.1007/s00122-005-0065-5 pmid: 16133305 |
[39] | TAN M K, SHARP P J, LU M Q, HOWES N. Genetics of grain dormancy in a white wheat. Australian Journal of Agricultural Research, 2006,57:1157-1165. |
[40] |
MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theoretical and Applied Genetics, 2009,119(7):1223-1235.
pmid: 19669633 |
[41] |
LIU S B, BAI G H, CAI S B, CHEN C X. Dissection of genetic components of preharvest sprouting resistance in white wheat. Molecular Breeding, 2011,27(4):511-523.
doi: 10.1007/s11032-010-9448-7 |
[42] |
LIN M, CAI S, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015,128(7):1385-1395.
pmid: 25851002 |
[43] | 周勇. 中国小麦地方品种穗发芽抗性评价及全基因组关联分析[D]. 成都: 四川农业大学, 2017. |
ZHOU Y. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese) | |
[44] |
SINGH R, MATUS-CÁDIZ M, BÅGA M, HUCL P, CHIBBAR R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010,174(3):391-408.
doi: 10.1007/s10681-010-0137-8 |
[45] | CABRAL A L, JORDAN M C, MCCARTNEY C A, YOU F M, HUMPHREYS D G, MACLACHLAN R, POZNIAK C J. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat ( Triticum aestivum L.). BMC Plant Biology, 2014,14(1):340. |
[46] | KATO K, NAKAMURA W, TABIKI T, MIURA H, SAWADA S. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theoretical and Applied Genetics, 2001,102(6/7):980-985. |
[47] |
JUSTIN M V, ROBERT N S, JOHN M M, MICHAEL J G. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat ( Triticum aestivum L.). Plant Science, 2019,281:180-185.
doi: 10.1016/j.plantsci.2019.01.004 pmid: 30824050 |
[48] | 李式昭, 郑建敏, 伍玲, 李俊, 万洪深, 杨漫宇, 罗江陶, 刘廷辉, 杨开俊, 蒲宗君. 四川小麦品种籽粒硬度和穗发芽抗性相关基因的分子标记鉴定. 西南农业学报, 2018,31(4):641-645. |
LI S Z, ZHENG J M, WU L, LI J, WAN H S, YANG M Y, LUO J T, LIU T H, YANG K J, PU Z J. Identification of grain hardness and resistance to pre-harvest sprouting in Sichuan wheat cultivars with molecular markers. Southwest China Journal of Agricultural Sciences, 2018,31(4):641-645. (in Chinese) | |
[49] | TANG Y L, LI C S, YANG W Y, WU Y Q, WU X L, WU C, MA X L, LI S Z, ROSEWARNE G M. Quality potential of synthetic-derived commercial wheat cultivars in south-western China. Crop and Pasture Science, 2016, 67(6): 583-593. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
[15] | 冯子恒,宋莉,张少华,井宇航,段剑钊,贺利,尹飞,冯伟. 基于无人机多光谱和热红外影像信息融合的小麦白粉病监测[J]. 中国农业科学, 2022, 55(5): 890-906. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 592
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|