中国农业科学 ›› 2020, Vol. 53 ›› Issue (16): 3372-3384.doi: 10.3864/j.issn.0578-1752.2020.16.014
王耀松1(),张唯唯1,马天怡1,蔡敏1,张怡帆1,胡荣蓉2,唐长波2(
)
收稿日期:
2020-03-02
接受日期:
2020-04-21
出版日期:
2020-08-16
发布日期:
2020-08-27
通讯作者:
唐长波
作者简介:
王耀松,E-mail:基金资助:
WANG YaoSong1(),ZHANG WeiWei1,MA TianYi1,CAI Min1,ZHANG YiFan1,HU RongRong2,TANG ChangBo2(
)
Received:
2020-03-02
Accepted:
2020-04-21
Online:
2020-08-16
Published:
2020-08-27
Contact:
ChangBo TANG
摘要:
【目的】研究脂类过氧化作用的最终产物丙二醛(malondialdehyde,MDA)对核桃分离蛋白(walnut protein isolate,WPI)结构和乳化性能的影响,在分子水平上探讨这种氧化对WPI结构修饰与功能影响机制,为核桃蛋白抗油脂产物氧化及对乳化性功能的损伤提供理论依据。【方法】采用酸沉碱溶法分离核桃蛋白,加入1,1,3,3-四乙基环丙烷制备的产物MDA最终浓度分别为0、0.1、1、5、10和20 mmol·L-1,在室温下与WPI反应24 h,通过透析去除MDA,再真空冷冻干燥制备MDA氧化核桃蛋白。测定氧化蛋白标记性基团(巯基、二硫键、氨基和羰基)、物理化学性质(溶解度、浊度、疏水性、粒径和Zeta电位)及蛋白的乳化功能性等。【结果】MDA氧化造成核桃蛋白溶解度从68.74%下降到11.88%,特别是5—20 mmol·L-1 MDA对溶解度有显著影响(P<0.05),但对蛋白溶液的浊度影响不大(其所有值保持在0.32左右);在蛋白分子基团修饰方面,0—1 mmol·L-1 MDA对总巯基、二硫键、自由氨基和羰基含量影响不大,但5 mmol·L-1以上浓度的MDA对总巯基和自由氨基含量的降低及对二硫键和羰基含量的上升影响显著(P<0.05);聚丙烯酰胺凝胶电泳结果也显示较高浓度MDA对二硫键的含量增加影响显著,并促进核桃蛋白分子间(内)形成了还原性二硫键和非还原性共价键。在低于0.1 mmol·L-1的MDA中氧化并不影响核桃蛋白二级结构,而在1 mmol·L-1 MDA以上则能显著降低α-螺旋和β-折叠、β-转角含量,提高无规则卷曲含量;随着MDA浓度增加而引起的蛋白荧光强度变化规律与蛋白二级结构中的有序结构变化规律相同,特别是10 mmol·L-1以上浓度的MDA能极大地降低蛋白荧光强度。0—1 mmol·L-1 MDA氧化不改变蛋白疏水性,但1 mmol·L-1以上浓度的MDA显著降低蛋白疏水性,疏水性最大降低程度为对照组的1/10;同时,低于1 mmol·L-1 MDA氧化对核桃蛋白粒径和带电量没有显著影响,而浓度超过1 mmol·L-1MDA则能显著提高蛋白粒径大小,并在10 mmol·L-1 MDA时达到最大粒径约1 160 nm,且显著降低蛋白带电量,且随着MDA浓度提高而一直降低。在核桃乳化功能性方面,0.1 mmol·L-1 MDA氧化即可显著降低蛋白乳化活性,而1 mmol·L-1MDA氧化可显著降低乳化稳定性;随着MDA的浓度上升至20 mmol·L-1,乳化活性和乳化稳定性持续降低并均能损失约2/3的功能性。【结论】核桃蛋白在脂类氧化产物MDA氧化体系中,随着氧化度的加剧,MDA通过与蛋白反应而显著修饰蛋白分子结构(包括其残基基团),促进其交联形成大的聚集体进而改变其物化性质,从而显著降低蛋白的乳化功能性。
王耀松,张唯唯,马天怡,蔡敏,张怡帆,胡荣蓉,唐长波. 丙二醛氧化对核桃分离蛋白结构及乳化性的影响[J]. 中国农业科学, 2020, 53(16): 3372-3384.
WANG YaoSong,ZHANG WeiWei,MA TianYi,CAI Min,ZHANG YiFan,HU RongRong,TANG ChangBo. Influence of Oxidative Modification by Malondialdehyde on Structure and Emulsifying Properties of Walnut Protein[J]. Scientia Agricultura Sinica, 2020, 53(16): 3372-3384.
表1
MDA氧化核桃分离蛋白的二级结构含量"
丙二醛浓度 MDA concentration (mmol·L-1) | 二级结构相对含量 Secondary structure content (%) | |||
---|---|---|---|---|
α-螺旋 α-helix | β-折叠 β-sheet | β-转角 β-turn | 无规则卷曲Random coil | |
0 | 2.78±0.02a | 49.73±0.38a | 22.68±0.18a | 25.36±0.20e |
0.1 | 2.79±0.02a | 49.28±0.31a | 22.90±0.15a | 25.49±0.16e |
1 | 2.00±0.00c | 48.45±0.07b | 22.02±0.03b | 27.43±0.04d |
5 | 2.05±0.07c | 45.7±0.57c | 21.85±0.07bc | 30.00±0.14c |
10 | 2.00±0.01c | 43.69±0.12d | 21.64±0.06cd | 32.47±0.09b |
20 | 2.31±0.01b | 43.03±0.18d | 21.56±0.09d | 32.80±0.14a |
[1] | TAPIA M I, SÁNCHEZ-MORGADO J R, GARCÍA-PARRA J, RAMÍREZ R, HERNÁNDEZ T, GONZÁLEZ-GÓMEZ D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. Journal of Food Composition and Analysis, 2013,31(2):232-237. |
[2] |
HOLT R R, YIM S J, SHEARER G C, HACKMAN R M, DJURICA D, NEWMAN J W, SHINDEL A W, KEEN C L. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. Journal of Nutritional Biochemistry, 2015,26(12):1458-1466.
pmid: 26396054 |
[3] | KOŁAKOWSKA A, BARTOSZ G. Oxidation of Food Components:An Introduction: Food Oxidants and Antioxidants Chemical, Biological, and Functional Properties. CRC Press, 2014. |
[4] | BURANASOMPOB A, TANG J, POWERS J R, REYES J, CLARK S, SWANSON B G. Lipoxygenase activity in walnuts and almonds. LWT-Food Science and Technology, 2007,40(5):893-899. |
[5] |
JENSEN P N, SØRENSEN G, ENGELSEN S B, BERTELSEN G. Evaluation of quality changes in walnut kernels (Juglans regia L.) by Vis/NIR spectroscopy. Journal of Agricultural and Food Chemistry, 2001,49(12):5790-5796.
pmid: 11743765 |
[6] |
CHOE E, MIN D B. Chemistry and reactions of reactive oxygen species in foods. Critical Reviews in Food Science and Nutrition, 2006,46(1):1-22.
pmid: 16403681 |
[7] | BARON C P. Protein Oxidation in Foods and Its Prevention: Food Oxidants and Antioxidants Chemical, Biological, and Functional Properties. CRC Press, 2014. |
[8] |
LIU S, LIU F G, XUE Y H, GAO Y X. Evaluation on oxidative stability of walnut beverage emulsions. Food Chemistry, 2016,203:409-416.
pmid: 26948632 |
[9] | 孙领鸽, 王丹丹, 毛晓英, 詹萍, 田洪磊. 丙烯醛氧化修饰对核桃蛋白结构和乳化特性的影响. 食品科学, 2018,39(20):43-48. |
SUN L G, WANG D D, MAO X Y, ZHAN P, TIAN H L. Influence of oxidative modification with acrolein on structural and emulsifying properties of walnut protein. Food Science, 2018,39(20):43-48. (in Chinese) | |
[10] | 王丹丹, 毛晓英, 孙领鸽, 田洪磊, 詹萍. 蛋白质氧化对核桃蛋白质结构的影响. 食品工业与科技, 2018,39(12):32-38. |
WANG D D, MAO X Y, SUN L G, TIAN H L, ZHAN P. Effect of oxidative modification of protein on structure of walnut protein. Science and Technology of Food Industry, 2018,39(12):32-38. (in Chinese) | |
[11] | 王丹丹, 孙领鸽, 毛晓英. 脂质氢过氧化物氧化对核桃分离蛋白结构的影响. 食品与发酵工业, 2019,45(1):94-99. |
WANG D D, SUN L G, MAO X Y. Effects of lipid oxidative modification by hydroperoxides on the structure of walnut protein. Food and Fermentation Industries, 2019,45(1):94-99. (in Chinese) | |
[12] | 王丹丹, 毛晓英, 孙领鸽, 吴庆智, 李宝坤, 程卫东. 氢过氧化物氧化对核桃蛋白结构和乳化特性的影响. 中国食品学报, 2019,19(12):60-68. |
WANG D D, MAO X Y, SUN L G, WU Q Z, LI B K, CHENG W D. Effects of oxidation by hydrogen peroxide on the structure and emulsifying properties of walnut protein. Journal of Chinese Institute of Food Science and Technology, 2019,19(12):60-68. (in Chinese) | |
[13] |
MAO X Y, HUA Y F. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences, 2012,13(2):1561-1581.
pmid: 22408408 |
[14] | ADAMS A, DE KIMPE N, VAN BOEKEL M A J S. Modification of casein by the lipid oxidation product malondialdehyde.[J] ournal of Agricultural and Food Chemistry, 2008,56(5):1713-1719. |
[15] |
WANG Y S, LIU C Q, MA T Y, ZHAO J. Physicochemical and functional properties of γ-aminobutyric acid-treated soy proteins. Food Chemistry, 2019,295:267-273.
pmid: 31174759 |
[16] | LIU G, XIONG Y L, BUTTERFIELD D A. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates. Journal of Food Science, 2000,65(5):811-818. |
[17] |
WANG Y S, LIU M Y, ZHAO L M, QIU Y J, ZHUANG Y P. Influence of processing conditions on reducing γ-aminobutyric acid content during fortified milk production. Food Research International, 2015,72:215-222.
doi: 10.1016/j.foodres.2015.04.004 |
[18] |
LEVINE R L, GARLAND D, OLIVER C N, AMICI A, CLIMENT I, LENZ A G, AHN B W, SHALTIEL S, STADTMAN E R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 1990,186:464-477.
pmid: 1978225 |
[19] |
LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature, 1970,227(5259):680-685.
doi: 10.1038/227680a0 pmid: 5432063 |
[20] | WANG Y S, LIU M Y, ZHAO L M, QIU Y J, ZHUANG Y P. Interactions of γ-aminobutyric acid and whey proteins/caseins during fortified milk production. RSC Advances, 2015,5(111):91235-91245. |
[21] |
HARLEY C A, JESUS C S, CARVALHO R, BRITO R M, MORAIS-CABRAL J H. Changes in channel trafficking and protein stability caused by LQT2 Mutations in the PAS domain of the HERG channel. PloS ONE, 2012,7(3):e32654.
pmid: 22396785 |
[22] | KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1980,624(1):13-20. |
[23] |
SLATTER D A, PAUL R G, MURRAY M, BAILEY A J. Reactions of lipid-derived malondialdehyde with collagen. The Journal of Biological Chemistry, 1999,274(28):19661-19669.
pmid: 10391905 |
[24] |
ZHAO J, CHEN J, ZHU H N, XIONG Y L. Mass spectrometric evidence of malonaldehyde and 4 hydroxynonenal adductions to radical-scavenging soy peptides. Journal of Agricultural and Food Chemistry, 2012,60(38):9727-9736.
doi: 10.1021/jf3026277 pmid: 22946674 |
[25] |
HELLWIG M. The chemistry of protein oxidation in food. Angewandte Chemie International Edition, 2019,58(47):16742-16763.
doi: 10.1002/anie.201814144 pmid: 30919556 |
[26] | BUTTKUS H A. The reaction of malondialdehyde or oxidized linolenic acid with sulphydryl compounds. Journal of the American Oil Chemists Society, 1972,49:613-614. |
[27] | DAVIES M J. Protein oxidation and peroxidation. Biochemical Journal, 2016,473(Pt7):805-825. |
[28] | 沈鹏辉, 樊诗堃, 赵谋明, 周非白. 氧化对大豆蛋白结构、乳液稳定性及消化特性的影响. 食品科学. 2019,40(14):7-14. |
SHEN P H, FAN S K, ZHAO M M, ZHOU F B. Influence of oxidation on soy protein structure, emulsion stability and lipid digestion. Food Science, 2019,40(14):7-14. (in Chinese) | |
[29] | WU W, ZHANG C M, HUA Y F. Structural modification of soy protein by the lipid peroxidation product malondialdehyde. Journal of the Science of Food and Agriculture, 2009,89:1416-1423. |
[30] | WU W, WU X J, HUA Y F. Structural modification of soy protein by the lipid peroxidation product acrolein. LWT-Food Science and Technology, 2010,43(1):133-140. |
[31] | LI F, WU X J, WU W. Effects of malondialdehyde-induced protein oxidation on the structural characteristics of rice protein. International Journal of Food Science and Technology, 2020,55:760-768. |
[32] |
NIU X Y, WANG X Y, HAN Y T, LU C R, CHEN X Q, WANG T Y, XU M J, ZHU Q. Influence of malondialdehyde-induced modifications on physicochemical and digestibility characteristics of whey protein isolate. Journal of Food Biochemistry, 2019,43(12):e13041.
pmid: 31502294 |
[33] |
ESTÉVEZ M, PADILLA P, CARVALHO L, MARTÍN L, CARRAPISO A, DELGADO J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biology, 2019,26:101277.
doi: 10.1016/j.redox.2019.101277 pmid: 31352127 |
[34] |
CHEN N N, ZHAO Q Z, SUN W Z, ZHAO M M. Effects of malondialdehyde modification on the in vitro digestibility of soy protein isolate. Journal of Agricultural and Food Chemistry, 2013,61(49):12139-12145.
doi: 10.1021/jf404099y pmid: 24236702 |
[35] |
WANG Z M, HE Z F, EMARA A M, GAN X, LI H J. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry, 2019,288:405-412.
doi: 10.1016/j.foodchem.2019.02.126 pmid: 30902311 |
[36] |
GÜRBÜZ G, HEINONEN M. LC-MS investigations on interactions between isolatedβ-lactoglobulin peptides and lipid oxidation product malondialdehyde. Food Chemistry, 2015,175:300-305.
doi: 10.1016/j.foodchem.2014.11.154 pmid: 25577084 |
[37] |
ESTÉVEZ M. Protein carbonyls in meat systems: A review. Meat Science, 2011,89(3):259-279.
doi: 10.1016/j.meatsci.2011.04.025 pmid: 21621336 |
[38] | 王守业, 徐小龙, 刘清亮, 解永树. 荧光光谱在蛋白质分子构象研究中的应用. 化学进展, 2001,13(4):257-260. |
WANG S Y, XU X L, LIU Q L, XIE Y S. The application of fluorescence spectroscopy in the study on protein conformation. Progress in Chemistry, 2001,13(4):257-260. (in Chinese) | |
[39] |
FOETTINGER A, MELMER M, LEITNER A, LINDNER W. Reaction of the indole group with malondialdehyde: Application for the derivatization of tryptophan residues in peptides. Bioconjugate Chemistry, 2007,18(5):1678-1683.
doi: 10.1021/bc070001h pmid: 17705413 |
[40] |
WANG J, ZHAO M M, QIU C Y, SUN W Z. Effect of malondialdehyde modification on the binding of aroma compounds to soy protein isolates. Food Research International, 2018,105:150-158.
doi: 10.1016/j.foodres.2017.11.001 pmid: 29433202 |
[41] |
TRAVERSO N, MENINI S, MAINERI E P, PATRIARCA S, ODETTI P, COTTALASSO D, MARINARI U M, PRONZATO M A. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2004,59(9):B890-B895.
doi: 10.1093/gerona/59.9.B890 |
[42] | SUN W Z, ZHOU F B, SUN D W, ZHAO M M. Effect of oxidation on the emulsifying properties of myofibrillar proteins. Food Bioprocess Technology, 2013,6(7):1703-1712. |
[43] |
FITZPATRICK A W, KNOWLES T P J, WAUDBY C A, VENDRUSCOLO M, DOBSON C M. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Computational Biology, 2011,7(10):e1002169.
doi: 10.1371/journal.pcbi.1002169 pmid: 22022239 |
[44] | WANG Y S, ZHAO J, ZHANG W W, LIU C Q, JAUREGI P, HUANG M G. Modification of heat-induced whey protein gels by basic amino acids. Food Hydrocolloids, 2020,100:105397. |
[45] | WANG L, ZHANG M, BHANDARI B, GAO Z X. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel. Food Research International, 2016,86:131-139. |
[46] |
TAN L, HONG P Z, YANG P, ZHOU C X, XIAO D H, ZHONG T J. Correlation Between the water solubility and secondary structure of tilapia-soybean protein co-precipitates. Molecules, 2019,24(23):4337.
doi: 10.3390/molecules24234337 |
[47] |
WANG Y S, XIONG Y L, RENTFROW G K, NEWMAN M C. Oxidation promotes cross-linking but impairs film-forming properties of whey proteins. Journal of Food Engineering, 2013,115(1):11-19.
doi: 10.1016/j.jfoodeng.2012.09.013 |
[48] | 周麟依, 孙玉凤, 吴非. 丙二醛氧化对米糠蛋白结构及功能性质的影响. 食品科学, 2019,40(12):98-107. |
ZHOU L Y, SUN Y F, WU F. Effects of oxidation by malondialdehyde on the structure and function of rice bran protein. Food Science, 2019,40(12):98-107. (in Chinese) | |
[49] |
WANG Y S, ZHAO J, LIU C Q, LI W W. Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels. Food Hydrocolloids, 2019,94:287-293.
doi: 10.1016/j.foodhyd.2019.03.031 |
[50] | BARHOUM A, GARCÍA-BETANCOURT M L, RAHIER H, ASSCHE G V. Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability: Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc., 2018. |
[51] |
SHACTER E. Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews, 2000,32(3/4):307-326.
doi: 10.1081/DMR-100102336 |
[52] |
RYAN K N, ZHONG Q, FOEGEDING E A. Use of whey protein soluble aggregates for thermal stability-a hypothesis paper. Journal of Food Science, 2013,78(8):R1105-R1115.
doi: 10.1111/1750-3841.12207 pmid: 23957418 |
[53] | ZAYAS J F. Solubility of Proteins: Functionality of Proteins in Food. Verlag Berlin Heidelberg New York: Springer, 1997. |
[54] |
LI S J, KING A J. Structural changes of rabbit myosin subfragment 1 altered by malonaldehyde, a byproduct of lipid oxidation. Journal of Agricultural and Food Chemistry, 1999,47(8):3124-3129.
pmid: 10552619 |
[55] |
JU Z Y, KILARA A. Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. Journal of Agricultural and Food Chemistry, 1998,46(5):1830-1835.
doi: 10.1021/jf9710185 |
[56] | LACLAIR C E, ETZEL M R. Turbidity and protein aggregation in whey protein beverages. Journal of Food Science, 2009,74(7):526-535. |
[57] |
TANG C H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 2017,57(12):2636-2679.
doi: 10.1080/10408398.2015.1067594 pmid: 26463743 |
[58] | ZAYAS J F. Emulsifying Properties of Proteins: Functionality of Proteins in Food. Verlag Berlin Heidelberg New York: Springer, 1997. |
[59] |
YUAN B E, REN J Y, ZHAO M M, LUO D H, GU L J. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate. LWT-Food Science and Technology, 2012,46(2):453-459.
doi: 10.1016/j.lwt.2011.12.001 |
[60] |
CHEN N N, ZHAO M M, SUN W Z, REN J Y, CUI C. Effect of oxidation on the emulsifying properties of soy protein isolate. Food Research International, 2013,52(1):26-32.
doi: 10.1016/j.foodres.2013.02.028 |
[61] |
KONG B H, XIONG Y L, CUI X H, ZHAO X H. Hydroxyl radical-stressed whey protein isolate: Functional and rheological properties. Food Bioprocess Technology, 2013,6(1):169-176.
doi: 10.1007/s11947-011-0674-8 |
[1] | 王吉,张鑫,胡静荣,于智慧,朱迎春. 灭菌猪肉浆中发酵菌株脂质水解和氧化能力分析[J]. 中国农业科学, 2022, 55(9): 1846-1858. |
[2] | 宋松泉,刘军,唐翠芳,程红焱,王伟青,张琪,张文虎,高家东. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063. |
[3] | 杨滨娟,李萍,胡启良,黄国勤. 紫云英与油菜混播对稻田土壤N2O排放及相关功能基因丰度的影响[J]. 中国农业科学, 2022, 55(4): 743-754. |
[4] | 邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542. |
[5] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[6] | 范子晗,罗雅尹,熊华烨,张育文,康福蓉,王昱桁,王洁,石孝均,张跃强. 酸性土壤硝化作用对柑橘铵毒害的效应[J]. 中国农业科学, 2022, 55(18): 3600-3612. |
[7] | 杨昌沛,王乃秀,汪锴,黄子晴,林海烂,张莉,张晨,冯露秋,甘玲. 外源性γ-氨基丁酸抵抗仔猪氧化应激的效果及机制[J]. 中国农业科学, 2022, 55(17): 3437-3449. |
[8] | 胡亚丽,聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学, 2022, 55(14): 2696-2708. |
[9] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[10] | 姜春晖,孙旭东,唐燕,罗胜缤,徐闯,陈媛媛. 姜黄素通过Nrf2信号通路对H2O2诱导奶牛乳腺上皮细胞氧化应激的缓解[J]. 中国农业科学, 2021, 54(8): 1787-1794. |
[11] | 雷豪杰,李贵春,柯华东,魏崃,丁武汉,徐驰,李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异[J]. 中国农业科学, 2021, 54(4): 768-779. |
[12] | 孙燕燕,李昕,林密,李峰松,包艳芳,陈夏辉,杨光,曾巧英,蒋韬. Pt-Pd合金纳米颗粒标记口蹄疫A型病毒抗体检测的免疫层析方法[J]. 中国农业科学, 2021, 54(3): 653-661. |
[13] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[14] | 侯成立,黄彩燕,郑晓春,刘维华,杨奇,张德权. 宰后不同时间滩羊肉抗氧化活性的变化及可能机制[J]. 中国农业科学, 2021, 54(23): 5110-5124. |
[15] | 刘娇,陈志敏,郑爱娟,刘国华,蔡辉益,常文环. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
|