中国农业科学 ›› 2020, Vol. 53 ›› Issue (4): 683-694.doi: 10.3864/j.issn.0578-1752.2020.04.002
• 作物遗传育种·种质资源·分子遗传学683 • 上一篇 下一篇
收稿日期:
2019-07-31
接受日期:
2019-09-29
出版日期:
2020-02-16
发布日期:
2020-03-09
通讯作者:
赵团结
作者简介:
曹永策,E-mail:caoyongce@yau.edu.cn。
基金资助:
YongCe CAO1,2,ShuGuang LI2,XinCao ZHANG1,JieJie KONG2,TuanJie ZHAO2()
Received:
2019-07-31
Accepted:
2019-09-29
Online:
2020-02-16
Published:
2020-03-09
Contact:
TuanJie ZHAO
摘要:
【背景】开花期是大豆重要的生育期性状,不仅决定了大豆品种的适种范围,而且对大豆的产量和品质有重要影响。江淮地区是中国重要的大豆产区,目前对该地区夏大豆开花期性状遗传基础研究相对较少。【目的】利用2个夏大豆材料杂交衍生的重组自交系群体对开花期进行QTL定位,为分子标记辅助选择育种和基因克隆提供依据。【方法】以科丰35(KF35)和南农1138-2(NN1138-2)为亲本,构建了含91个家系(F2:8)的重组自交系群体(NJK3N-RIL),在6个环境下调查开花期性状数据。利用限制位点相关DNA测序(restriction-site associated DNA sequencing,RAD-seq)技术对群体亲本及家系材料进行SNP标记分型,并利用窗口滑动法进行bin标记划分。利用bin标记构建该群体的遗传图谱,结合多年多点的表型数据,使用QTL Network 2.2软件中的基于混合线性模型的复合区间作图法(mixed-model based composite interval mapping,MCIM)和Windows QTL Cartographer V2.5_011软件中的复合区间作图法(composite interval mapping,CIM)对开花期性状进行QTL分析。【结果】在大豆全基因组范围内共获得36 778个高质量SNP标记,被划分为1 733个bin标记。利用1 733个bin标记构建了一张覆盖大豆20条染色体遗传图谱,图谱长度为2 362.4 cM,标记间平均遗传距离为1.4 cM。利用MCIM法共检测到9个控制开花期的加性QTL、2对上位性QTL和1个环境互作QTL,3种效应累积贡献率分别为63.9%、4.6%和2.1%。利用CIM法共检测到10个控制开花期的QTL,其中qFT-8-1、qFT-11-1、qFT-15-1、qFT-16-1能在3个及以上环境检测到。综合2种分析方法,共检测到12个开花期QTL,其中qFT-8-1、qFT-11-1、qFT-15-1、qFT-16-1、qFT-16-2、qFT-20-1和qFT-20-2等能够被2种方法检测到。同时qFT-5-1、qFT-8-1、qFT-8-2、qFT-13-1、qFT-15-1和qFT-20-2等是本研究新检测到的开花期QTL。【结论】夏大豆开花期遗传构成复杂,但加性QTL效应占绝对优势,上位性互作及环境互作效应对开花期影响较小。qFT-8-1、qFT-11-1、qFT-15-1、qFT-16-1能够被2种方法在多个环境中检测到,是NJK3N-RIL群体中控制开花期的重要位点。
曹永策,李曙光,张新草,孔杰杰,赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析[J]. 中国农业科学, 2020, 53(4): 683-694.
YongCe CAO,ShuGuang LI,XinCao ZHANG,JieJie KONG,TuanJie ZHAO. Construction of Genetic Map and Mapping QTL for Flowering Time in A Summer Planting Soybean Recombinant Inbred Line Population[J]. Scientia Agricultura Sinica, 2020, 53(4): 683-694.
表1
不同环境下NJK3N-RIL群体及其亲本开花期(天)性状描述性统计"
环境 Environment | 亲本 Parents | NJK3N-RIL群体 | ||||||
---|---|---|---|---|---|---|---|---|
科丰35 KF35 (d) | 南农1138-2 NN1138-2 (d) | 均值±标准差 Mean ± SD (d) | 变幅 Range (d) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV (%) | ||
2012JP | 36.8 ± 2.4 | 39.8 ± 1.5 | 37.7 ± 1.9 | 31.0—41.3 | -0.5 | 0.3 | 5.2 | |
2012FY | 48.3 ± 2.3 | 54.0 ± 4.6 | 51.1 ± 2.0 | 47.7—57.3 | 0.3 | -0.3 | 4.0 | |
2013JP | 40.7 ± 3.1 | 50.5 ± 3.7 | 44.8 ± 2.4 | 40.0—50.7 | 0.3 | -0.4 | 5.3 | |
2013FY | 41.0± 0.0 | 51.3 ± 2.0 | 47.1 ± 2.5 | 43.0—53.7 | 0.9 | 0.6 | 5.4 | |
2014JP | 40.3 ± 2.3 | 47.0 ± 1.3 | 49.3 ± 1.9 | 37.7—48.7 | -0.4 | 1.0 | 4.2 | |
2014YC | 35.3 ± 0.6 | 45.7 ± 1.2 | 42.1 ± 2.6 | 35.7—48.3 | 0.4 | 0.1 | 6.2 |
表2
NJK3N-RIL群体遗传图谱信息汇总"
染色体 Chromosome | SNP数目 SNP numbers | bin标记数目 bin numbers | 遗传图谱长度 Linkage distance (cM) | 标记间平均距离 Mean distance of adjacent markers(cM) |
---|---|---|---|---|
Chr. 01 | 528 | 57 | 110.3 | 1.9 |
Chr. 02 | 1127 | 114 | 146.4 | 1.3 |
Chr. 03 | 3521 | 81 | 110.2 | 1.4 |
Chr. 04 | 1272 | 90 | 126.4 | 1.4 |
Chr. 05 | 1333 | 73 | 94.5 | 1.3 |
Chr. 06 | 1497 | 87 | 133.6 | 1.5 |
Chr. 07 | 1700 | 85 | 132.1 | 1.6 |
Chr. 08 | 1111 | 109 | 144.5 | 1.3 |
Chr. 09 | 1030 | 85 | 140.7 | 1.7 |
Chr. 10 | 3435 | 95 | 123.9 | 1.3 |
Chr. 11 | 2256 | 85 | 126.4 | 1.5 |
Chr. 12 | 733 | 65 | 115.5 | 1.8 |
Chr. 13 | 2264 | 104 | 125.5 | 1.2 |
Chr. 14 | 1752 | 81 | 80.1 | 1.0 |
Chr. 15 | 2008 | 88 | 148.6 | 1.7 |
Chr. 16 | 2384 | 84 | 85.4 | 1.0 |
Chr. 17 | 2220 | 84 | 118.0 | 1.4 |
Chr. 18 | 4513 | 110 | 98.2 | 0.9 |
Chr. 19 | 695 | 71 | 96.8 | 1.4 |
Chr. 20 | 1399 | 85 | 105.5 | 1.2 |
总计Total | 36778 | 1733 | 2362.4 | 1.4 |
表3
NJK3N-RIL群体开花期加性及QTL与环境互作效应的分析"
位点 QTL | 染色体 Chromosome | 两侧标记 Flank markers | 位置 Position (cM) | QTL置信区间 Confidence interval (cM) | 物理区间 1-LOD interval (Mb) | 加性效应 A (d) | h2A (%) | 加性与环境 互作效应 AE (d) | h2AE (%) | 报道位点 Reported locus |
---|---|---|---|---|---|---|---|---|---|---|
qFT-8-1 | 8 | bin670-bin671 | 98.2 | 95.6—102.2 | 36.6—41.3 | 0.4 | 3.2 | 新位点 Novel | ||
qFT-10-1 | 10 | bin875-bin876 | 123.3 | 122.0—123.3 | 48.6—49.3 | -0.5 | 4.8 | First flower 24-4 | ||
qFT-11-1 | 11 | bin928-bin929 | 85.8 | 84.6—86.5 | 14.9—15.6 | 0.7 | 9.9 | 0.6**(2013FY) -0.8**(2014JP) | 4.6 | First flower 11-2 |
qFT-13-1 | 13 | bin1093-bin1094 | 68.0 | 66.8—68.5 | 28.4—29.5 | 0.4 | 3.0 | 新位点 Novel | ||
qFT-15-1 | 15 | bin1289-bin1290 | 130.1 | 128.1—130.1 | 48.1—49.0 | 0.6 | 7.9 | 新位点 Novel | ||
qFT-16-1 | 16 | bin1313-bin1314 | 24.2 | 21.2—27.7 | 3.8—5.0 | 0.7 | 10.5 | First flower 13-7 | ||
qFT-16-2 | 16 | bin1357-bin1358 | 64.3 | 62.2—66.2 | 31.1—32.0 | 0.6 | 7.2 | First flower 9-3 | ||
qFT-20-1 | 20 | bin1688-bin1689 | 47.7 | 46.8—48.3 | 34.3—34.5 | 0.7 | 12.0 | First flower 21-2 | ||
qFT-20-2 | 20 | bin1727-bin1728 | 95.8 | 95.2—96.8 | 44.0—44.5 | 0.5 | 5.4 | 新位点 Novel |
表4
NJK3N-RIL群体开花期QTL上位互作效应分析"
上位性QTL对 Epistatic QTL pairs | 位点 QTL | 相邻标记 Flanking marker | 位置 position (cM) | 置信区间 Confidence interval (cM) | 上位性效应 AA (d) | h2AA (%) | 上位性与环境互作效应 AAE (d) | h2AAE (%) |
---|---|---|---|---|---|---|---|---|
1 | qFT-11-1 | bin928-bin929 | 85.8 | 84.6—86.5 | -0.2 | 0.6 | -0.3**(2013FY) 0.2*(2014JP) | 0.8 |
qFT-16-1 | bin1313-bin1314 | 24.2 | 21.2—27.7 | |||||
2 | qFT-13-1 | bin1093-bin1094 | 68.0 | 66.8—68.5 | 0.3 | 1.5 | ||
qFT-16-2 | bin1357-bin1358 | 64.3 | 62.2—66.2 |
表5
NJK3N-RIL群体不同环境中开花期QTL分析"
位点 QTL | 染色体 Chromosome | 遗传位置 Position (cM) | 相邻标记 Flank markers | LOD | 置信区间 Confidence interval (cM) | 加性效应 Additive (d) | 贡献率 R2 (%) | 环境 Environment | 报道位点 Reported locus |
---|---|---|---|---|---|---|---|---|---|
qFT-5-1 | 5 | 69.4 | bin398-bin399 | 4.4 | 67.5—71.8 | -0.6 | 9.9 | 2014JP | Novel |
qFT-6-1 | 6 | 108.3 | bin482-bin483 | 3.8 | 106.9—109.5 | 0.6 | 5.0 | 2013JP | First flower 1-1 |
qFT-8-1 | 8 | 105.2 | bin670-bin671 | 4.5 | 99.2—108.2 | 0.8 | 9.1 | 2013FY | Novel |
107.2 | bin671-bin672 | 3.2 | 102.9—108.4 | 0.5 | 6.6 | 2012JP | |||
106.2 | bin670-bin671 | 4.6 | 100.9—111.3 | 0.6 | 9.0 | 2014YC | |||
qFT-8-2 | 8 | 123.1 | bin685-bin686 | 4.8 | 121.4—125.2 | 0.7 | 9.4 | 2012FY | Novel |
123.1 | bin685-bin686 | 3.8 | 121.3—125.2 | 0.6 | 5.9 | 2013JP | |||
qFT-11-1 | 11 | 84.6 | bin927-bin928 | 12.7 | 84.2—85.8 | 1.3 | 34.3 | 2012JP | First flower 11-2 |
84.5 | bin927-bin928 | 14.2 | 83.6—87.5 | 1.5 | 39.6 | 2012FY | |||
87.2 | bin930-bin931 | 18.2 | 86.5—88.4 | 1.9 | 49.6 | 2013FY | |||
88.2 | bin930-bin931 | 8.6 | 86.8—89.2 | 1.0 | 18.5 | 2014YC | |||
92.9 | bin932-bin933 | 9.4 | 89.0—95.6 | 1.1 | 17.7 | 2013JP | |||
qFT-15-1 | 15 | 130.1 | bin1290-bin1291 | 9.3 | 127.4—133.5 | 0.9 | 23.0 | 2014JP | Novel |
134.6 | bin1291-bin1292 | 4.5 | 130.6—136.8 | 0.7 | 7.6 | 2013JP | |||
134.6 | bin1291-bin1292 | 4.6 | 131.0—138.3 | 0.6 | 8.3 | 2014YC | |||
135.4 | bin1292-bin1293 | 4.0 | 130.6—138.8 | 0.6 | 8.6 | 2012JP | |||
qFT-16-1 | 16 | 21.3 | bin1313-bin1314 | 5.6 | 17.2—26.1 | 0.9 | 10.8 | 2013FY | First flower 13-7 |
22.3 | bin1313-bin1314 | 4.7 | 21.7—25.0 | 0.6 | 10.9 | 2014JP | |||
23.3 | bin1313-bin1314 | 7.9 | 21.1—26.3 | 0.9 | 18.1 | 2012FY | |||
24.3 | bin1313-bin1314 | 11.1 | 21.2—26.3 | 1.0 | 24.8 | 2014YC | |||
26.7 | bin1315-bin1316 | 13.9 | 23.9—28.0 | 1.3 | 28.9 | 2013JP | |||
32.7 | bin1320-bin1321 | 5.2 | 31.9—33.6 | 0.7 | 11.5 | 2012JP | |||
qFT-16-2 | 16 | 66.2 | bin1359-bin1360 | 3.4 | 65.9—69.6 | 0.7 | 6.2 | 2013FY | First flower 9-3 |
qFT-20-1 | 20 | 44.8 | bin1682-bin1683 | 10.3 | 43.8—45.4 | 1.1 | 19.1 | 2013JP | First flower 21-2 |
qFT-20-2 | 20 | 97.3 | bin1728-bin1729 | 5.3 | 94.7—99.0 | 0.7 | 11.9 | 2014JP | Novel |
[1] | XIA Z, WATANABE S, YAMADA T, TSUBOKURA Y, NAKASHIMA H, ZHAI H, ANAI T, SATO S, YAMAZAKI T, LU S, WU H, TABATA S, HARADA K . Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America , 2012,109(32):2155-2164. |
[2] | KONG F J, NAN H Y, CAO D, LI Y, WU F F, WANG J L, LU S J, YUAN X H, COBER E R, ABE J, LIU B H . A new dominant gene conditions early flowering and maturity in soybean. Crop Science, 2014,54(6):2529-2535. |
[3] | JIA H C, JIANG B J, WU C X, LU W C, HOU W S, SUN S, YAN H R, HAN T F . Maturity group classification and maturity locus geno-typing of early-maturing soybean varieties from high-latitude cold regions. PLoS ONE, 2014,9:e94139. |
[4] | COBER E R, MOLNAR S J, CHARETTE M, VOLDENG H D . A new locus for early maturity in soybean. Crop Science, 2010,50(2):524-527. |
[5] | ZHANG W K, WANG Y J, LUO G Z, ZHANG J S, HE C Y, WU X L, GAI J Y, CHEN S Y . QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004,108(6):1131-1139. |
[6] | LIU W, KIM M Y, VAN K, LEE Y H, LI H L, LIU H L, LEE S H . QTL identification of yield-related traits and their association with flowering and maturity in soybean. Journal of Crop Science and Biotechnology, 2011,14(1):65-70. |
[7] | COOPER R L . A delayed flowering barrier to higher soybean yields. Field Crop Research, 2003,82(1):27-35. |
[8] | KEIM P, DIERS B W, OLSON T C, SHOEMAKER R C . RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990,126(3):735-742. |
[9] | BERNARD R L . Two major genes for time of flowering and maturity in soybeans. Crop Science, 1971,11(2):242-244. |
[10] | BUZZELL R I . Inheritance of a soybean flowering response to fluorescent-daylength conditions. Canadian Journal of Genetics and Cytology, 1971,13(4):703-707. |
[11] | BUZZELL R I, VOLDENG H D . Inheritance of insensitivity to long daylength. Soybean Genetics Newsletter, 1980,7(1):26-29. |
[12] | MCBLAIN B A, BERNARD R L . A new gene affecting the time of flowering and maturity in soybeans. Journal of Heredity, 1987,78(3):160-162. |
[13] | BONATO E R, VELLO N A . E6, a dominant gene conditioning early flowering and maturity in soybeans. Genetics and Molecular Biology, 1999,22(2):229-232. |
[14] | COBER E R, VOLDENG H D . A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Science, 2001,41(3):698-701. |
[15] | SAMANFAR B, MOLNAR S J, CHARETTE M, SCHOENROCK A, DEHNE F, GOLSHANI A, BELZILE F, COBER E R . Mapping and identification of a potential candidate gene for a novel maturity locus,E10, in soybean. Theoretical and Applied Genetics, 2017,130(2):377-390. |
[16] | RAY J D, HINSON K, MANKONO J, MALO M F . Genetic control of a long-juvenile trait in soybean. Crop Science, 1995,35(4):1001-1006. |
[17] | WANG F F, NAN H Y, CHEN L Y, FANG C, ZHANG H Y, SU T, LI S C, CHENG Q, DONG L D, LIU B H, KONG F J, LU S J . A new dominant locus,E11, controls early flowering time and maturity in soybean. Molecular Breeding, 2019,39(5):70. |
[18] | WATANABE S, XIA Z, HIDESHIMA R, TSUBOKURA Y, SATO S, YAMANAKA N, TAKAHASHI R, ANAI T, TABATA S, KITAMURA K, HARADA K . A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011,188(2):395-407. |
[19] | WATANABE S, HIDESHIMA R, XIA Z, TSUBOKURA Y, SATO S, NAKAMOTO Y, YAMANAKA N, TAKAHASHI R, ISHIMOTO M, ANAI T, TABATA S, HARADA K . Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009,182(4):1251-1262. |
[20] | LIU B, KANAZAWA A, MATSUMURA H, TAKAHASHI R, HARADA K, ABE J . Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008,180(2):995-1007. |
[21] | ZHAO C, TAKESHIMA R, ZHU J, XU M, SATO M, WATANABE S, KANAZAWA A, LIU B H, KONG F J, YAMADA T, ABE J . A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 2016,16:20. |
[22] | LU S J, ZHAO X H, HU Y L, LIU S L, NAN H Y, LI X M, FANG C, CAO D, SHI X Y, KONG L P, SU T, ZHANG F G, LI S C, WANG Z, YUAN X H, COBER E R, WELLER J L, LIU B H, HOU X L, TIAN Z X, KONG F J . Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017,49(5):773-779. |
[23] | DISSANAYAKA A, RODRIGUEZ T O, DI S, YAN F, GITHIRI S M, RODAS F R, ABE J, TAKAHASHI R . Quantitative trait locus mapping of soybean maturity gene E5. Breeding Science, 2016,66(3):407-415. |
[24] | 向仕华, 王吴彬, 何庆元, 杨红燕, 刘成, 邢光南, 赵团结, 盖钧镒 . 多环境下野生大豆染色体片段代换系群体农艺性状相关QTL/片段的鉴定. 中国农业科学, 2015,48(1):10-22. |
XIANG S H, WANG W B, HE Q Y, YANG H Y, LIU C, XING G N, ZHAO T J, GAI J Y . Identification of QTL/segments related to agronomic traits using CSSL population under multiple environments. Scientia Agricultura Sinica, 2015,48(1):10-22. (in Chinese) | |
[25] | 宋晓宇, 毛婷婷, 王立伟, 刘丽凤, 李晓那, 孙石, 韩天富 . 不同播期条件下大豆开花期性状的全基因组关联分析. 中国油料作物学报, 2018,40(4):459. |
SONG X Y, MAO T T, WANG L W, LIU L F, LI X N, SUN S, HAN T F . Genome–wide association analysis of soybean flowering time under different sowing dates. Chinese Journal of Oil Crop Sciences, 2018, 40(4):459.(in Chinese) | |
[26] | 张雅娟, 曹永策, 李曙光, 常芳国, 孔杰杰, 盖钧镒, 赵团结 . 夏大豆重组自交系群体 NJRIMN开花期和株高QTL定位. 大豆科学, 2018,37(6):860-865. |
ZHANG Y J, CAO Y C, LI S G, CHANG F G, KONG J J, GAI J Y, ZHAO T J . Mapping QTL for flowering time and plant height in a summer-sowing soybean RIL population NJRIMN. Soybean Science, 2018, 37(6):860-865. (in Chinese) | |
[27] | ORF J H, CHASE K, JARVIK T, MANSURC L M, CREGAN P B, ADLER F R, LARK K G . Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science, 1999,39(6):1642-1651. |
[28] | YAMANAKA N, NINOMIYA S, HOSHI M, TSUBOKURA Y, YANO M, NAGAMURA Y, SASAKI T, HARADA K . An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Research, 2001,8(2):61-72. |
[29] | LEE S, JUN T H, MICHEL A P, MIAN M A R . SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica, 2015,203(3):521-532. |
[30] | MAO T T, LI J Y, WEN Z X, WU T T, WU C X, SUN S, JIANG B J, HOU W S, LI W B, SONG Q J, WANG D C, HAN T F . Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017,18(1):415. |
[31] | WATANABE S, TSUKAMOTO C, OSHITA T, YAMADA T, ANAI T, KAGA A . Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breeding Science, 2017,67(3), 277-285. |
[32] | KONG L P, LU S J, WANG Y P, FANG C, WANG F F, NAN H Y, SU T, LI S C, ZHANG F G, LI X M, ZHAO X H, YUAN X H, LIU B H, KONG F J . Quantitative trait locus mapping of flowering time and maturity in soybean using next-generation sequencing-based analysis. Frontiers in Plant Science, 2018,9:995. |
[33] | KIM M Y, SHIN J H, KANG Y J, SHIM S R, LEE S H . Divergence of flowering genes in soybean. Journal of Biosciences, 2012,37(5):857-870. |
[34] | ZHAI H, LÜ S X, WANG Y Q, CHEN X, REN H X, YANG J Y, CHENG W, ZONG C M, GU H P, QIU H M, WU H Y, ZHANG X Z, CUI T T, XIA Z J . Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE, 2014,9(5):e97636. |
[35] | 邱丽娟, 常汝镇 . 大豆种质资源描述规范和数据标准. 北京:中国农业出版社, 2006. |
QIU L J, CHANG R Z. Descriptors and data standard for soybean (Glycine spp). Beijing:China Agriculture Press, 2006. (in Chinese) | |
[36] | NYQUIST W E, BAKER R J . Estimation of heritability and prediction of selection response in plant-populations. Critical Reviews in Plant Sciences, 1991,10.3:235-322. |
[37] | HAN K, JEONG H J, YANG H B, KANG S M, KWON J Y, KIM S, CHOI D, KANG B C . An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Research, 2016,23(2):81-91. |
[38] | HUANG X H, FENG Q, QIAN Q, ZHAO Q, WANG L, WANG A, GUAN J P, FAN D L, WENG Q J, HUANG T, DONG G J, SANG T, HAN B . High-throughput genotyping by whole-genome resequencing. Genome Research, 2009,19(6):1068-1076. |
[39] | VAN OOIJEN J W . JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen,Kyazma BV, 2006. |
[40] | YANG J, HU C C, HU H, YU R D, XIA Z, YE X Z, ZHU J . QTLNetwork: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008,24(5):721-723. |
[41] | WANG S, BASTEN C, ZENG Z . Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh,NC, 2007. |
[42] | GUTIERREZ-GONZALEZ J J, VUONG T D, ZHONG R, YU O, LEE J D, SHANNON G, ELLERSIECK M, NGUYEN H T, SLEPER D A . Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theoretical and Applied Genetics, 2011,123(8):1375-1385. |
[43] | ZOU G H, ZHAI G W, FENG Q, YAN S, WANG A, ZHAO Q, SHAO J F, ZHANG Z P, ZOU J Q, HAN B, TAO Y Z . Identification of QTLs for eight agronomically important traits using an ultra-high- density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Journal of Experimental Botany, 2012,63(15):5451-5462. |
[44] | ZHANG D, LI H, WANG J, ZHANG H, HU Z, CHU S, LV H, YU D . High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Frontiers in Plant Science, 2016,7:372. |
[45] | JIANG N, SHI S, SHI H, KHANZADA H, WASSAN G M, ZHU C, PENG X, YU Q, CHEN X, HE X, FU J, HU L, XU J, OUYANG L, SUN X, ZHOU D, HE H, BIAN J . Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Frontiers in Plant Science, 2017,8:1223. |
[46] | ARDISSON M, RANWEZ V, BESNARD A, BESNARD A, LEROY P, POUX G, ROUMET P, VIADER V, SANTONI S, DAVID J . Genotyping by sequencing using specific allelic capture to build a high-density genetic map of durum wheat. PLoS ONE, 2016,11(5):e0154609. |
[47] | 张传量, 简俊涛, 冯洁, 崔紫霞, 许小宛, 孙道杰 . 基于90K芯片标记的小麦芒长QTL定位. 中国农业科学, 2018,51(1):17-25. |
ZHANG C L, JIAN J T, FENG J, CUI Z X, XU X W, SUN D J . QTL Identification for awn length based on 90K array mapping in wheat. Scientia Agricultura Sinica, 2018,51(1):17-25. (in Chinese) | |
[48] | WANG W B, LIU M F, WANG Y F, LI X L, CHENG S X, SHU L P, YU Z P, KONG J J, ZHAO T J, GAI J Y . Characterizing two inter-specific bin maps for the exploration of the QTLs/genes that confer three soybean evolutionary traits. Frontiers in Plant Science, 2016,7:1248. |
[49] | CHENG Y B, MA Q B, REN H L, XIA Q J, SONG E L, TAN Z Y, LI S X, ZHANG G Y, NIAN H . Fine mapping of a Phytophthora- resistance gene RpsWY in soybean(Glycine max L.) by high- throughput genome-wide sequencing. Theoretical and Applied Genetics, 2017,130(5):1041-1051. |
[50] | WANG L, CHENG Y, MA Q, MU Y, HUANG Z, XIA Q, ZHANG G, NIAN H . QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics, 2019,20(1):260. |
[51] | XU Y, CROUCH J H . Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 2008,48(2):391-407. |
[52] | WANG D L, ZHU J, LI Z K L, PATERSON A H . Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999,99(7/8):1255-1264. |
[53] | YANG J, ZHU J . Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005,110(7):1268-1274. |
[54] | CHEN X . A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303(5666):2022-2025. |
[55] | ABE M, KAYA H, WATANABE-TANEDA A, SHIBUTA M, YAMAGUCHI A, SAKAMOTO T, KURATA T, AUSIN I, ARAKI T, ALONSO‐BLANCO C . FE, a phloem specific Myb related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1. The Plant Journal, 2015,83(6):1059-1068. |
[56] | HU R B, QI G, KONG Y Z, KONG D J, GAO Q, ZHOU G K . Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biology, 2010,10(1):145. |
[57] | KIM S G, KIM S Y, PARK C M . A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 2007,226(3):647-654. |
[58] | KONG F J, LIU B H, XIA Z J, SATO S, KIM B M, WATANABE S, YAMADA T, TABATA S, KANAZAWA A, HARADA K, ABE J . Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology, 2010,154(3):1220-1231. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[4] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[5] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[8] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[9] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[10] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[11] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[12] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[13] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[14] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[15] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
|