中国农业科学 ›› 2019, Vol. 52 ›› Issue (6): 1090-1101.doi: 10.3864/j.issn.0578-1752.2019.06.012
邹双霞1,金澄艳1,鲍建军2,王悦1,陈炜昊1,吴天弋1,王利宏1,吕晓阳1,高雯1,王步忠3,朱国强4,戴国俊1,师东方5,孙伟1,6()
收稿日期:
2018-09-18
接受日期:
2018-12-12
出版日期:
2019-03-16
发布日期:
2019-03-22
通讯作者:
孙伟
作者简介:
邹双霞,E-mail: 1074432801@qq.com;Tel:18705271578。
基金资助:
ZOU ShuangXia1,JIN ChengYan1,BAO JianJun2,WANG Yue1,CHEN WeiHao1,WU TianYi1,WANG LiHong1,LÜ XiaoYang1,GAO Wen1,WANG BuZhong3,ZHU GuoQiang4,DAI GuoJun1,SHI DongFang5,SUN Wei1,6()
Received:
2018-09-18
Accepted:
2018-12-12
Online:
2019-03-16
Published:
2019-03-22
Contact:
Wei SUN
摘要:
【背景】羊大肠杆菌病是一种以剧烈腹泻和败血症为特征的急性传染病,是规模化羊场最为常见高发的细菌性疾病之一,尤其是初生羔羊易被产肠毒素大肠杆菌(ETEC)感染,引起羔羊腹泻,又叫羔羊白痢,使养殖场遭受严重的经济损失。而传统的抗生素治疗方案存在诸多缺陷。【目的】 本研究通过让湖羊羔羊口服大肠杆菌 F17菌株获得不腹泻和腹泻的羔羊个体,筛选出服用大肠杆菌F17菌毛后不腹泻与腹泻型个体中差异表达的circRNA,进而探究circRNA在绵羊抗腹泻中的作用,从而发现与抗大肠杆菌病性状相关的候选基因。从circRNA层面上,加深对绵羊拮抗大肠杆菌F17菌株的认识,确定绵羊拮抗大肠杆菌F17菌株的功能基因。【方法】用CIRI软件从头预测circRNA,利用RNA-seq技术,首次筛选出感染大肠杆菌F17菌株后不腹泻与腹泻型羔羊个体脾脏中差异表达的(DE)circRNA,对差异表达转录本进行GO富集分析,结合GO注释结果对其功能进行描述。统计每个GO条目中所包括的差异转录本个数,并用Fisher's exact test计算每个GO条目中差异转录本富集的显著性。然后随机选择6个DE circRNA,利用q-PCR分别验证这6个DE circRNA在不腹泻和腹泻组羔羊脾脏内的相对表达水平,进而利用Miranda软件来预测与miRNA结合的circRNA以及miRNA的靶基因,根据miRNA靶基因的功能注释来阐明此部分circRNA的功能,分析circRNA-miRNA-mRNA相互作用,最后用q-PCR验证circRNA在不腹泻组和腹泻组羔羊体内的相对表达水平。【结果】 绘制参考序列后,鉴定出已知的7 730个circRNA,DE circRNA与GO 数据库进行比对,发现一共有60条circRNA被注释和分类到297个功能亚类中。利用RNA-seq在不腹泻和腹泻羔羊脾脏中筛选出60个差异表达的(DE) circRNA,其中31个上调和29个下调,用q-PCR验证随机选择的6个DE circRNA在不腹泻组和腹泻组羔羊体内的相对表达水平,发现与RNA-seq结果一致。利用Miranda分析circRNA-miRNA-mRNA相互作用,发现6个circRNA、5个miRNA和8个mRNA之间存在一定的靶标关系,用q-PCR验证mRNA在不腹泻组和腹泻组羔羊体内的相对表达水平,发现与RNA-seq结果一致。【结论】 探究了对于不腹泻和腹泻羔羊脾脏中circRNA的表达谱,进一步了解其在绵羊抗病发生过程中的调控作用。发现了不腹泻和腹泻羔羊脾脏中差异表达的circRNA,有助于找出羔羊如何抵抗腹泻的发生机制,为羔羊抵抗腹泻提供科学的依据。
邹双霞,金澄艳,鲍建军,王悦,陈炜昊,吴天弋,王利宏,吕晓阳,高雯,王步忠,朱国强,戴国俊,师东方,孙伟. 感染大肠杆菌F17湖羊羔羊脾脏中差异circRNA分析[J]. 中国农业科学, 2019, 52(6): 1090-1101.
ZOU ShuangXia,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SHI DongFang,SUN Wei. Differential circRNA Analysis in the Spleen of Hu-sheep Lambs Infected with F17 Escherichia coli[J]. Scientia Agricultura Sinica, 2019, 52(6): 1090-1101.
表1
GAPDH,DE circRNA和mRNA的引物"
基因符号Gene symbol | 引物序列Primer sequence | 产物长度Length of product (bp) | |
---|---|---|---|
差异表达的环状RNA的引物 Primers of DE circRNA | circRNA_2125 | F:ATTGAATCACTTCTCTGTTGC | 129 |
R:TAGGTGCTCAAAATAGGAC | |||
circRNA_3832 | F:AGCCTCTCATCTGTACAC | 134 | |
R:CAGTAACTGCCTAGAGCA | |||
circRNA_7711 | F:ACAAAGATTCCATTGACAG | 101 | |
R:ACCAAGAGGCTAGCAAGAC | |||
circRNA_6710 | F:CAGATTACAGCTATGGCGA | 124 | |
R:CCCTCATGATCTCATAGG | |||
circRNA_6914 | F:TTGGCTGTTACTATCATGAG | 124 | |
R:CTGAACTCTTAACTTGCA | |||
circRNA_4030 | F:TGATGCAGATATTAAACCTC | 133 | |
R:CCAATCTCGGATAACTTCAC | |||
差异表达的信使RNA的引物 Primers of DE mRNA | NEB | F:ATTACAGCTATCCACCCGAC | 149 |
R:TGCCTTTTCCATTTCTAAG | |||
UBE3B | F:TAAGATTGCCAGGAAACTGC | 133 | |
R:AGCCAGGGACACGTACCAC | |||
ADGRF2 | F:GGCGTTTACCTCTTTCTCG | 103 | |
R:CAAGCTGCAAATAGAAAC | |||
LAMA1 | F:AAATGATCGAAAAGGCTAC | 127 | |
R:AACCGCCTTTTCCGTAGGAC | |||
LTF | F:GAAAAGCGTATCCCAACCTG | 103 | |
R:TTGAAGGCACCAGAATAAC | |||
MGAT5 | F:CATCATCCACACCTACACG | 111 | |
R:AACTGCAAGTCTCGTCCGC | |||
TLN2 | F:ACGACGGTGGTTAAATAC | 125 | |
R:AGTTGCCCATAGTCACTGGTC | |||
ARHGAP30 | F:TCTTCAACCTGGGTCGCTC | 159 | |
R:GCAGCCCCTCTGGTTCATC | |||
SLC25A29 | F:GCGTCCTGGCTCTCCACCT | 125 | |
R:CCCTGCCTCCCCGCGCTC | |||
GAPDH引物 Primers of GAPDH | GAPDH-F | F:GTTCCACGGCACAGTCAAGG | 127 |
R:ACTCAGCACCAGCATCACCC |
表2
circRNA-miRNA-mRNA靶标关系预测"
环状RNA circRNA | 最佳circRNA基因 Best gene of circRNA | P值 P vale | 微小RNA miRNA | 微小RNA的靶基因 Target gene of miRNA | 靶标基因转录ID Transcription ID of target gene |
---|---|---|---|---|---|
circRNA_6577 | LOC101111058 (Btnl 1) | 0.000190825 | oar-miR-381-5p | ||
circRNA_7725 | 0.003873598 | oar-miR-1193-5p | NEB | XM_012137591.2 | |
UBE3B | XM_004017436.3 | ||||
circRNA_0309 | LOC101108092 (GSTM1) | 0.004205007 | oar-miR-370-3p | ADGRF2 | XM_004018870.3 |
circRNA_2125 | LOC101115614 (NRAMP2) | 0.004205007 | oar-miR-370-3p | LAMA1 | XM_012103553.2 |
circRNA_3832 | B2M | 0.004205007 | oar-miR-370-3p | LTF | NM_001024862.1 |
circRNA_6577 | LOC101111058 (Btnl 1) | 0.004205007 | oar-miR-370-3p | MGAT5 | XM_012139230.2 |
circRNA_7711 | 0.004205007 | oar-miR-370-3p | TLN2 | XM_012181407.2 | |
circRNA_6577 | LOC101111058 (Btnl 1) | 0.006550584 | oar-miR-3956-3p | SLC25A29 | XM_015102051.1 |
circRNA_6577 | LOC101111058 (Btnl 1) | 0.011765813 | oar-miR-370-5p |
[1] |
邓齐文, 许晔琼, 王书奎 . 长链非编码RNA 多态性与肿瘤相关性的研究. 医学研究生学报, 2014,27(3):303-306.
doi: 10.3969/j.issn.1008-8199.2014.03.021 |
DENG Q W, XU Y Q, WANG S K . Long-chain non-coding RNA polymorphism and tumor correlation study. Journal of Medical Postgraduate, 2014,27(3):303-306. (in Chinese)
doi: 10.3969/j.issn.1008-8199.2014.03.021 |
|
[2] |
SANGER H L, KLOTZ G, RIESNER D, GROSS H J, KLEISCHMIDT A K . VIROID are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 1976, 11:3852-3856.
doi: 10.1073/pnas.73.11.3852 pmid: 1069269 |
[3] |
MATSUMOTO Y, FISHEL R, WICKNER R . Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(19):7628-7632.
doi: 10.1073/pnas.87.19.7628 pmid: 1699230 |
[4] |
ARNBERG A C , VAN OMMEN G J B, GRIVELL L A, BRUGGEN E F J V, BORST P . Some yeast mitochondrial RNAs are circular. Cell, 1980,19(2):313-319.
doi: 10.1016/0092-8674(80)90505-X pmid: 6986989 |
[5] |
KOS A, DIJKEMA R, AMBERG A C, VAN P H, SCHELLEKENS H . The hepatitis delta (delta) virus possesses a circular RNA. Nature, 1986,323(6088):558-560.
doi: 10.1038/323558a0 |
[6] | CAPEL B, SWAIN A, NICOLIS S, HACKER A, WALTER M, KOOPMAN P, GOODFELLOW P , LOVELL-badqeBADQE R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993,7(5):1019-1030. |
[7] |
COCQUERELLE C, MASCREZ B, HETUIN D, BAILLEUL B . Mis-splicing yields circular RNA molecule. FASEB Journal, 1993,7(1):155-160.
doi: 10.1006/excr.1993.1021 pmid: 7678559 |
[8] |
LASDA E, PARKER R . Circular RNAs: diversity of form and function. RNA, 2014,20(12):1829-1842.
doi: 10.1261/rna.047126.114 pmid: 25404635 |
[9] |
SALZMAN J, GAWAD C, WANG P L, LACAYO N, BRWON P O . Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012,7(2):e30733.
doi: 10.1371/journal.pone.0030733 pmid: 3270023 |
[10] |
ASHWAL-FLUSS R, MEYER M, PAMUDURITI N R, LAVNOV A, BARTOK O. HANMAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N , KADENER S . circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 |
[11] |
STARKE S, JOST I, ROSSBACH O, SCHNEIDER T, SCHREINER S. HUNQ L H, BINDIREIF A . Exon circularization requires canonical splice signals. Cell Report, 2015,10(1):103-111.
doi: 10.1016/j.celrep.2014.12.002 pmid: 25543144 |
[12] |
徐兴文 . 羊大肠杆菌病防治. 中国畜禽种业, 2017,4:129-130.
doi: 10.3969/j.issn.1673-4556.2017.04.109 |
XU X W . Prevention and treatment of Escherichia Coli in sheep. China Animal and Poultry Industry, 2017,4:129-130. (in Chinese)
doi: 10.3969/j.issn.1673-4556.2017.04.109 |
|
[13] |
张文静 . 羊大肠杆菌病的防控措施. 畜牧兽医科技信息, 2017,6:76.
doi: 10.3969/J.ISSN.1671-6027.2017.06.071 |
ZHANG W J . Prevention and control measures for sheep colibacillosis. Herbivore, 2017,6:76. (in Chinese)
doi: 10.3969/J.ISSN.1671-6027.2017.06.071 |
|
[14] | LEWIS S J, HEATON K W . Stool form as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997,32:920-924. |
[15] |
P, G, P. P,and R. N, circBase: a database for circular RNAs. Rna-a Publication of the Rna Society, 2014. 20(11):1666-1670.
doi: 10.1261/rna.043687.113 |
[16] |
GAO Y, WANG J, ZHAO F , CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology, 2015. 16:4.
doi: 10.1186/s13059-014-0571-3 pmid: 25583365 |
[17] | ANDERS S. HUBER W . Differential expression of RNA-Seq data at the gene level - the DESeq package. European Molecular Biology Laboratory, 2013. |
[18] |
ROBINSON, M D, MCCARTHY D J , SMYTH G K . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
doi: 10.1093/bioinformatics/btp616 |
[19] |
KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TUKIMATSU T, YAMANISHI Y . KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008,36:480-484.
doi: 10.1093/nar/gkm882 pmid: 2238879 |
[20] |
JOHN B, ENRIGHT A J, ALEXIE A, THOMAS T, CHRIS S . Human MicroRNA targets. PLoS Biology, 2004. 2(11):e363.
doi: 10.1371/journal.pbio.0020363 |
[21] |
ENRIGH A, JOHN B, GAUL U, TUSCHL T, SANDER C, MARKS S . MicroRNA targets in Drosophila. Genome Biology, 2004,5(1):R1.
doi: 10.1186/gb-2003-5-1-r1 pmid: 14709173 |
[22] |
ABDELMOHSEN K, PANDA A C, DES, GRAMMITIKAKIS I, KIM J, DING J, NOH J H, KIM K M, MATTISON J A, DECABO R, COROSEP M . Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY), 2015,7(11):903-910.
doi: 10.18632/aging.100834 pmid: 26546448 |
[23] |
BURD C E, JECK W R, LIU Y, SANOFF H K , WANG Z. SHARPLESS N E. Expression of linear and novel circular forms of an INK4/ARF-associated Non-coding RNA correlates with atherosclerosis Risk. PLoS Geneicst, 2010,6(12):e1001233.
doi: 10.1371/journal.pgen.1001233 pmid: 2996334 |
[24] |
SALZMAN J, CHEN R E, OLESN M N, WANG P L, BROWN P O . Cell-type specific features of circular RNA expression. PLoS Genetics, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610 |
[25] |
MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGEISEN L H, MUNSCHAUER M, LOERWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, NOBEL F, RAJEWSKY N . Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013,495(7441):333-338.
doi: 10.1038/nature11928 |
[26] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J . Natural RNA circles function as efficient microRNA sponges. Nature, 2013,495(7441):384-388.
doi: 10.1038/nature11993 pmid: 23446346 |
[27] |
ZHENG Q, BAO C, GUO W, LI S, CHEN J, CHEN B, LUO Y, LYU D, LI Y, SHI G, LIANG L, GU J, HE X, HUANG S . Circular RNA profiling reveals an abundant circHIPK3that regulates cell growth by sponging multiple miRNAs. Nature Communication, 2016,7:11215.
doi: 10.1038/ncomms11215 pmid: 27050392 |
[28] |
CHEN C Y, SARMOW P . Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995,268(5209):415-417.
doi: 10.1126/science.7536344 pmid: 7536344 |
[29] |
WANG Y, WANG Z . Efficient backsplicing produces translatable circular mRNAs. RNA, 2015,21(2):172-179.
doi: 10.1261/rna.048272.114 pmid: 25449546 |
[30] |
ZHANG Y, ZHANG X O, CHEN T, XIANG J F, XING Y H, YIN Q, ZHU S, YANG S, CHEN L L . Circular intronic long noncoding RNAs. Molecular Cell, 2013,51(6):792-806.
doi: 10.1016/j.molcel.2013.08.017 pmid: 24035497 |
[31] |
LI Z, HUANG C, BAO C, CHEN L, LIN M, WANG X, ZHONG G, YU B, HU W, DAI L, ZHU P, CHANG Z, WU Q, ZHAO Y, JIA Y, XU P, LIU P, SHAN G . Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural Molecular Biology, 2015,22(3):256-264.
doi: 10.1038/nsmb.2959 |
[32] |
LASDA E P, ARKER R . Circular RNAs: diversity of form and function. RNA, 2014,20(12):1829-1842.
doi: 10.1261/rna.047126.114 pmid: 25404635 |
[33] |
ASHWAL-FLUSS R, MEYER M, PAMUDURTI NR, LVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N , KADENER S . circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 |
[34] |
YAMAZAKI T, GOYA I, GRAF D, CRAIG S, MARTIN-OROZCO N, DONG C . A Butyrophilin Family Member Critically Inhibits T Cell Activation. The Journal of Immunology, 2010,185(10):5907-5914.
doi: 10.4049/jimmunol.1000835 |
[35] |
NGUYEN T, LIU XK, ZHANG Y, DONG C . BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. The Journal of Immunology, 2006,176:7354-7360.
doi: 10.4049/jimmunol.176.12.7354 pmid: 1626526 |
[36] |
ARNETT H A, ESCOBAR S S, GONZALEZSUAREZ E, BUDELSKY A L, STEFFEN L A, BOIABI N, ZHANG M, SIU G, BREWER A W, VINEY J L . BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. The Journal of Immunology, 2007,178:1523-1533.
doi: 10.4049/jimmunol.178.3.1523 pmid: 17237401 |
[37] |
SMITH I A, KNEZEVIC B R, AMMANN J U, RHODES D A, AW D, PALMER D B, MATHER I H, TROWSDALE J . BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. The Journal of Immunology, 2010,184:3514-3525.
doi: 10.4049/jimmunol.0900416 pmid: 20208008 |
[38] |
BAS A, SWAMY M, ABELER-DORNER L, WILLIAMS G, PANG D J, BARBEE S D, HAYDAY A C, HAYDAY A C . Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11):4376-4381.
doi: 10.1073/pnas.1010647108 |
[39] |
SHEPPERD J A, LIPKUS I M, SANDERSON S C, MCBRIDE C M , O’NEILL S C, DOCHERTY S . Testing different communication formats on responses to imagined risk of having versus missing the GSTM1 gene.Journal of Health Communication, 2013, 18:124-137.
doi: 10.1080/10810730.2012.688245 pmid: 22888806 |
[40] |
SINGH R, MANCHANDA P K, KESARWANI P, SRIVASTAVA A, MITTAL R D . Influence of genetic polymorphisms in GSTM1, GSTM3, GSTT1 and GSTP1 on allograft outcome in renal transplant recipients. Clinical Transplantation, 2009,23:490-498.
doi: 10.1111/ctr.2009.23.issue-4 |
[41] |
SOCHA A L, GUERINOT M L . Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 2014,5:106.
doi: 10.3389/fpls.2014.00106 pmid: 3978347 |
[42] |
MIYATA T, JADOUL M, KUROKAWA K, YDSC C , VAN . beta-2 microglobulin in renal disease. Journal of the American Society of Nephrology, 1998 (9):1723-1735.
doi: 10.1038/sj.ijir.3900333 pmid: 9727382 |
[43] |
WALLGREN-PETTERSSON C, SSEWRY C A, NONWAK K J, LAING N G , Nemaline myopathies. Semin. Pediatric Neurology, 2011,18(4):230-238.
doi: 10.1016/j.spen.2011.10.004 pmid: 22172418 |
[44] |
KUMAR S, KAO W H , HOWLEY P M. Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. Journal of Biology. Chemistry, 1997,272:13548-13554.
doi: 10.1074/jbc.272.21.13548 pmid: 9153201 |
[45] |
HAMANN J, AUGST G, ARAC D, ENGLE F B, FORMSTON C . International union of basic and clinical pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Reviews, 2015; 67(2):338-367.
doi: 10.1124/pr.114.009647 pmid: 25713288 |
[46] | VILBOUX T, MALICDAN M C, CHANG Y M, GUO J, ZERFAS P M, STEPHEN J, CULLINANE A R, BYANT J, FISHER R, BROOKS B P, ZEIN W M, WIGGS E A, ZELEWSKI C K, PORETTI A, BRYAN M M, VEMULAPALLI M, MULLIKIN J C, KIRBY M, ANDERSON S M, HUIZING M, TORO C, GAHL W A, GUNAY- AYQUN M . Cystic cerebellar dysplasia and biallelic LAMA1 mutations: a lamininopathy associated with tics, obsessive compulsive traits and myopia due to cell adhesion and migration defects. Cognitive and Behavioural Genetics, 2016,53(5):318-329. |
[47] |
FELIPE L O , JUNIOR W F D S, ARAUJO K C, FABRINO D L . Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment. Brazilian Journal Microbiology, 2017,49(2):212-219.
doi: 10.1016/j.bjm.2017.05.008 pmid: 29132828 |
[48] |
HASSANI Z, SALEH A, TURPAULT S, KHIATI S, MORELLE W, VIQNON J, HUQNOT J P, URO-COSTE E, LEQRAND P, DELAFORGE M, LOISEAU S, CLARION L, LECOUVEY M, VOLLE J N, VIRIEUX D, IRAT J L, DUFFAU H, BAKALARA N . Phostine PST3. 1a Targets MGAT5 and inhibits glioblastoma- initiating cell invasiveness and proliferation. Molecular Cancer Research, 2017,15(10):1376-1387.
doi: 10.1158/1541-7786.MCR-17-0120 |
[49] |
DEBRAND E, ELJAI Y, SPENCE L, BATE N, PRAEKELT U, PRITCHARD C A, MONKLEY S J, CRITCHLEY D R . Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms. FEBS Journal, 2009,276(6):1610-1628.
doi: 10.1111/j.1742-4658.2009.06893.x pmid: 19220457 |
[50] |
PORCELLI V, FIERMONTE G, LONGO A, PALMIERI F . The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. Journal of Bioogylogy Chemistry, 2014,289(19):13374-13384.
doi: 10.1074/jbc.M114.547448 pmid: 24652292 |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[3] | 张春桃,马涛,屠焰,刁其玉. 昼夜节律与肉羊养分消化代谢和瘤胃发酵参数的关联[J]. 中国农业科学, 2022, 55(18): 3664-3674. |
[4] | 马梦楠,王慧明,王苗苗,姚望,张金璧,潘增祥. 猪卵泡闭锁过程中circINHBB的鉴定及其对颗粒细胞凋亡的影响[J]. 中国农业科学, 2021, 54(18): 3998-4007. |
[5] | 李文娟,陶慧,张乃锋,马涛,刁其玉. 高脂肪日粮对早期断奶羔羊断奶前后能量代谢和屠宰性能的影响[J]. 中国农业科学, 2021, 54(10): 2206-2216. |
[6] | 黄文琴,吕小康,庄一民,崔凯,王世琴,刁其玉,张乃锋. 早期断奶和育肥期饲粮NDF水平对湖羊生长性能和消化代谢的影响[J]. 中国农业科学, 2021, 54(10): 2217-2228. |
[7] | 石田培,王欣悦,侯浩宾,赵志达,尚明玉,张莉. 基于全转录组测序的绵羊胚胎不同发育阶段 骨骼肌circRNA的分析与鉴定[J]. 中国农业科学, 2020, 53(3): 642-657. |
[8] | 张德印,张小雪,李发弟,李冲,李国泽,张煜坤,李晓龙,宋其志,赵源,刘晓青,马亮强,王维民. 不同饲料效率与绵羊瘤胃组织形态学关系[J]. 中国农业科学, 2020, 53(24): 5115-5124. |
[9] | 黄赛男,金澄艳,鲍建军,王悦,陈炜昊,吴天弋,王利宏,吕晓阳,高雯,王步忠,朱国强,戴国俊,孙伟. F17大肠杆菌在湖羊羔羊个体脾脏中LncRNA表达谱变化[J]. 中国农业科学, 2019, 52(7): 1282-1294. |
[10] | 柴建民,王波,祁敏丽,王世琴,屠焰,陶晓菁,刁其玉,张乃锋. 不同开食料采食量断液体饲粮对羔羊生长发育的影响[J]. 中国农业科学, 2018, 51(2): 341-350. |
[11] | 金澄艳,吕晓阳,高雯,王悦,陈炜昊,盛水兴,陈玲,林杰,孙伟. 湖羊羔皮毛囊候选miRNA在不同花纹间的表达与毛囊发育特性关联的研究[J]. 中国农业科学, 2018, 51(14): 2814-2824. |
[12] | 鲍建军,苏锐,王庆增,吕晓阳,高雯,于嘉瑞,王利宏,陈 玲,吴文忠,盛水兴,周洪,孙伟,戴国俊. Smads与Hippo通道中YAP1基因在湖羊肌肉组织中时空表达研究及关联分析[J]. 中国农业科学, 2016, 49(11): 2203-2213. |
[13] | 倪蓉,孙伟,殷金凤,吕晓阳, 王庆增,苏锐,陈玲,吴文忠,徐厚生,李勇,陈家振,刘伟忠. 湖羊羔皮候选基因在不同花纹间的表达与毛囊发育特性关联的研究[J]. 中国农业科学, 2015, 48(8): 1616-1623. |
[14] | 殷金凤1, 倪蓉1, 王庆增1, 孙伟1, 丁家桐1, 张有法2, 陈玲2, 吴文忠2, 周洪3. 湖羊BMP7基因遗传多态、表达及与羔皮毛囊性状的关联[J]. 中国农业科学, 2014, 47(9): 1811-1818. |
[15] | 郭晶1, 李新宇1, 李隐侠2, 潘增祥1, 决肯3, 刘吉英1, 李二林1, 谢庄1, 陈玲4, 李齐发1. 湖羊TGF-β1基因特征、表达及其与排卵数的相关性分析[J]. 中国农业科学, 2013, 46(21): 4586-4593. |
|