[1] 罗明, 文启凯, 纪春燕, 薛玲娣, 慕玉俊. 不同施肥措施对棉田土壤微生物量及其活性的影响. 土壤, 2002, 34(1): 53-55.
Luo M, Wen Q K, Ji C Y, Xue L D, Mu Y J. Influence of different fertilization measures on microbial biomass and activities in cotton soil. Soils, 2002, 34(1): 53-55. (in Chinese)
[2] 胡诚, 曹志平, 罗艳蕊, 马永良. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响. 中国生态农业学报, 2007, 15(3): 48-51.
Hu C, Cao Z P, Luo Y R, Ma Y L. Effect of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese)
[3] Kanderler E, Tscherko D, Spiegel H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. Biology and Fertility of Soils, 1999, 28(4) :343-351.
[4] Xu Q, Jiang P, Xu Z. Soil microbial functional diversity under intensively managed bamboo plantations in southern China. Journal of Soils and Sediments, 2008, 8(3): 177-183.
[5] 刘守龙, 苏以荣, 黄道友, 肖和艾, 吴金水. 微生物商对亚热带地区土地利用及施肥制度的响应. 中国农业科学, 2006, 39(7): 1411-1418.
Liu S L, Su Y R, Huang D Y, XIAO H A, WU J S. Response of Cmic-to-Corg to land use and fertilizer application in subtropical region of China. Scientia Agricultura Sinica, 2006, 39(7): 1411-1418. (in Chinese)
[6] 路磊, 李忠佩, 车玉萍. 不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响. 土壤, 2006, 38(3): 309-314.
Lu L, Li Z P, Che Y P. Effects of different fertilization treatments on soil microbial biomass and enzyme activities in hapli-stagnic anthrosols. Soils, 2006, 38(3): 309-314. (in Chinese)
[7] 何电源. 中国南方土壤肥力与栽培植物施肥. 北京:科学出版社, 1994.
He D Y. Soil Fertility and Cultivated Fertilization in Southern China. Beijing: Science Press, 1994. (in Chinese)
[8] 孙凤霞, 张伟华, 徐明岗, 张文菊, 李兆强, 张敬业. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响. 应用生态学报, 2010, 21(11): 2792-2798.
Sun F X, Zhang W H, Xu M G, Zhang W J, Li Z Q, Zhang J Y. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798. (in Chinese)
[9] 梁斌, 周建斌, 杨学云. 长期施肥对土壤微生物生物量碳、氮及矿质态氮含量动态变化的影响. 植物营养与肥料学报, 2010, 16(2): 321-326.
Liang B, Zhou J B, Yang X Y. Changes of soil microbial biomass carbon and nitrogen, and mineral nitrogen after a long-term different fertilization. Plant Nutrition and Fertilizer Science, 2010, 16(2): 321-326. (in Chinese)
[10] 张瑞, 张贵龙, 姬艳艳, 李刚, 常泓, 杨殿林. 不同施肥措施对土壤活性有机碳的影响. 环境科学, 2013, 34(1): 277-282.
Zhang R, Zhang G L, Ji Y Y, Li G, Chang H, Yang D L. Effects of different fertilizer application on soil active organic carbon. Environmental Science, 2013, 34(1): 277-282. (in Chinese)
[11] Gu Y F, Zhang X P, Tu S H, Lindstrom K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 2009, 45(3): 239-246.
[12] 陈安磊, 王凯荣, 谢小立. 施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响. 农业环境科学学报, 2005, 24(6): 1094-1099.
Chen A L, Wang K R, Xie X L. Effects of fertilization systems and nutrient recycling on microbial biomass C, N and P in a reddish paddy soil. Journal of Agro-Environment Science, 2005, 24(6): 1094-1099. (in Chinese)
[13] Motavalli P P, Palm C A, Parton W J, Elliott E T, Frey S D. Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology and Biochemistry, 1995, 27(12): 1589-1599.
[14] Taova S. GetData digitizing program code: description, testing, training. International Nuclear Data Committee, International Atomic Energy Agency, Vienna, 2013.
[15] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.
[16] Curtis P S, Wang X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113(3): 299-313.
[17] Pallmann P. Applied meta-analysis with R. Journal of Applied Statistics, 2015, 42(4): 914-915.
[18] Liu C, Lu M, Cui J, Li B, Fang C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20(5): 1366-1381.
[19] 何寒青, 陈坤. Meta分析中的异质性检验方法. 中国卫生统计, 2006, 23(6): 486-487.
He Q H, Chen K. Methods for measuring heterogeneity in a Meta – analysis. Chinese Journal of Health Statistics, 2006, 23(6): 486-487. (in Chinese)
[20] Rosenberg M S, Adams D C, Gurevitch J. Metawin: Statistical Software for Meta-Analysis with Resampling Tests. America: Sinauer Associates Inc, 1997.
[21] PATEL M S. An introduction to meta-analysis. Health Policy, 1989, 11(1): 79-85.
[22] Wang J, Wang X, Xu M, Feng G, Zhang W, Lu C. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015, 102(3): 371-381.
[23] 臧逸飞, 郝明德, 张丽琼, 张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5): 1445-1451.
Zang Y F, HAO M D, Zhang L Q, Zhang H Q. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5): 1445-1451. (in Chinese)
[24] 唐海明, 郭立君, 肖小平, 汤文光, 孙继民. 长期施肥对大麦生育期双季稻田土壤微生物生物量碳、氮和微生物商的影响. 生态环境学报, 2015(6): 978-983.
Tang H M, Guo L J, Xiao X P, Tang W G, Sun J M. Effects of different long-term fertilizer managements on microbial biomass carbon, microbial biomass nitrogen and microbial quotient in paddy soil during barley growth periods. Ecology and Environmental Sciences, 2015(6): 978-983. (in Chinese)
[25] Anderson T H, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 1989, 21(4): 471-479.
[26] Witter E, Martensson A M, Garcia F V. Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemistry, 1993, 25(6): 659-669.
[27] Weigand S, Auerswald K, Beck T. Microbial biomass in agricultural topsoil after 6 years of bare fallow. Biology and Fertility of Soils, 1995, 19(2): 129-134.
[28] 刘守龙, 肖和艾, 童成立, 吴金水. 亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点. 农业现代化研究, 2003, 24(4):278-283.
Liu S L, Xiao H A, Tong C L, Wu J S. Microbial biomass C, N and P and their responses to application of inorganic and organic fertilizers in subtropical paddy soils. Research of Agricultural Modernization, 2003, 24(4): 278-283. (in Chinese)
[29] Kallenbach C, Grandy A S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture Ecosystems and Environment, 2011, 144(1): 241-252.
[30] 张雷. 有机物料、温度和土壤水分对黑土有机碳分解的影响[D]. 哈尔滨: 东北农业大学, 2004.
Zhang L. Effects of organic materials, temperature and soil moisture on organic carbon decomposition in black soil[D]. Harbin: Northeast Agricultural University, 2004. (in Chinese)
[31] Diaz-Ravina M. Seasonal changes in microbial biomass and nutrient flush in forest soils. Biology Fertility of Soils, 1995, 19(2/3): 220-226.
[32] Fierer N, Strickland M S, Liptzin D, Bradford M A, Cleveland C C. Global patterns in belowground communities. Ecology Letters, 2009, 12(11): 1238-1249.
[33] Santruckova H, Bird M I, Lloyd J. Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Functional Ecology, 2000, 14(1): 108-114.
[34] 张明, 白震, 张威, 丁雪丽,宋斗妍,朱俊丰,朱平. 长期施肥农田黑土微生物量碳、氮季节性变化. 生态环境学报, 2007, 16(5):1498-1503.
Zhang M, Bai Z, Zhang W, Ding X L, Song D Y, Zhu J F, Zhu P. Seasonal change of the long-term fertilization on microbial biomass C and N of arable mollisol. Ecology and Enviroment, 2007, 16(5):1498-1503. (in Chinese)
[35] Griffiths B S, Philippot L. Insights into the resistance and resilience of the soil microbial community. Fems Microbiology Reviews, 2012, 37(2): 112-129.
[36] 沈冰洁, 祝贞科, 袁红朝, 葛体达, 王久荣, 陈明利, 吴晓芙, 吴金水. 不同种植方式对亚热带红壤微生物多样性的影响. 环境科学, 2015, 36(10): 3839-3844.
Shen B J, Zhu Z K, Yuan H C, Ge T D, Wang J R, Chen M L, Wu X F, Wu J S. Effects of different plantation type on the abundance and diversity of soil microbes in subtropical red soils. Environmental Science, 2015, 36(10): 3839-3844. (in Chinese)
[37] 彭佩钦, 吴金水, 黄道友, 汪汉林, 唐国勇, 黄伟生, 朱奇宏. 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 2006, 26(7):2261-2267.
Peng P Q, Wu J S, Huang D Y, Wang H L, Tang G Y, Huang W S, Zhu Q H. Microbial biomass C, N, P of farmland soils in different land uses and cropping systems in DongTing Lake region. Acta Ecological Sinica, 2006, 26(7): 2261-2267. (in Chinese)
[38] Shi W, Dell E, Bowman D, Iyyemperumal K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288(1): 285-296.
[39] 尧水红. 干湿交替强度对旱地土壤结构形成及水稻秸秆分解过程的相互作用的影响[D]. 南京: 南京农业大学, 2005.
Yao S H. Soil biophysical processes involved in decomposition of rice straw incorporated in upland soils under wetting and drying cycles for stabilization of soil carbon pools and soil structure[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
[40] Wang F L, Bettany J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. Journal of Environmental Quality, 1993, 22(4): 709-714.
[41] 刘炳君, 杨扬, 李强, 呼广雷, 陈向阳, 方建新, 王世强. 调节茶园土壤pH对土壤养分、酶活性及微生物数量的影响. 安徽农业科学, 2011, 39(32): 19822-19824.
Liu B J, Yang Y, Li Q, Hu G L, Chen X Y, Fang J X, Wang S Q. Effects of adjusting pH of tea plantation soil on its soil nutrients, enzyme activity and microorganisms. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19822-19824. (in Chinese)
[42] 李飞, 张文丽, 刘菊, 夏会娟, 王建柱. 三峡水库泄水期消落带土壤微生物活性. 生态学杂志, 2013, 32(4): 968-974.
Li F, Zhang W L, Liu J, Xia H J, Wang J Z. Soil microbial activities in the water-level-fluctuating zone of three gorges reservoir area during discharging period. Chinese Journal of Ecology, 2013, 32(4): 968-974. (in Chinese)
[43] Xu J M, Tang C, Chen Z L. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biology and Biochemistry, 2006, 38(3): 544-552.
[44] 孙凤霞. 长期施肥对中国3种典型土壤微生物量碳氮和微生物碳源利用率的影响[D]. 呼和浩特: 内蒙古农业大学, 2010.
Sun F X. Effect of long-term fertilization on microbial biomass carbon, nitrogen and microbial utilization ratio of carbon source in three tropical soils of China[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese) |