[1] Cellini F, Chesson A, Colquhoun I, Constable A, Davies H V, Engel K H, Gatehouse A M, Kärenlampi S, Kok E J, Leguay J J. Unintended effects and their detection in genetically modified crops. Food and Chemical Toxicology, 2004, 42(7): 1089-1125.
[2] 赵艳, 李燕燕. 组学技术评价转基因农作物的非预期效应. 遗传, 2013, 35(12): 1360-1367.
Zhao Y, Li Y Y. Unintended effects assessment of genetically modified crops using omics techniques. Hereditas, 2013, 35(12): 1360-1367. (in Chinese)
[3] Arthur J W, Wilkins M R. Using proteomics to mine genome sequences. Joumal of Proteome Research, 2016, 3(3): 393-402.
[4] Yang P, Li F, X J, Wang X, Chen H, Chen F, Shen S H. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7(18): 3358-3368.
[5] Coll A, Nadal A, Rossignol M, Puigdomènech P, Pla M. Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Research, 2011, 20(4): 939-949.
[6] Albo A G, Mila S, Digilio A G, Motto M, Aime S, Corpillo D. Proteomic analysis of a genetically modified maize flour carrying Cry1Ab gene and comparison to the corresponding wild-type. Maydica, 2007, 52(4): 443-455.
[7] Zolla L, Rinalducci S, Antonioli P, Righetti P G. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. Journal of Proteome Research, 2008, 7(5): 1850-1861.
[8] Wang Y, Xu W, Zhao W, Hao J, Luo Y, Tang X, Zhang Y, Huang K. Comparative analysis of the proteomic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counterparts. Journal of Cereal Science, 2012, 55(2): 226-233.
[9] Xue K, Yang J, Liu B, Xue D. The integrated risk assessment of transgenic rice Oryza sativa: A comparative proteomics approach. Food Chemistry, 2012, 135(1): 314-318.
[10] Barbosa H S, Arruda S C, Azevedo R A, Arruda M A. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Analytical and Bioanalytical Chemistry, 2012, 402(1): 299-314.
[11] Storer N P, Thompson G D, Head G P, Hutchison W, Gassmann A. Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops and Food, 2012, 3(3): 154-162.
[12] Xu L, Wang Z, Zhang J, He K, Ferry N, Gatehouse A M R. Cross-resistance of Cry1Ab-selected Asian maize borer to other Cry toxins. Journal of Applied Entomology, 2010, 134(5): 429-438.
[13] Li H, Olson M, Lin G, Hey T, Tan S Y, Narva K E.Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western maize rootworm midgut membrane binding sites. PLoS One, 2013, 8(1): e53079.
[14] 周宗良, 林智敏, 耿丽丽, 苏军, 束长龙, 王锋, 朱彦明, 张杰. 水稻中cry1Ah1基因密码子优化方案的比较. 生物工程学报, 2012, 28(10): 1184-1194.
Zhou Z L, Lin Z M, Geng L L, Su J, Shu C L, Wang F, Zhu Y M, Zhang J. Comparison of codon optimizations of cry1Ah1 gene in rice. Chinese Journal of Biotechnology, 2012, 28(10): 1184-1194. (in Chinese)
[15] Guo Y Y, Tian J C, Shi W P, Dong X H, Romeis J, Naranjo S E, Hellmich R L, Shelton A M. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize. Transgenic Research, 2016, 25(1): 33-44.
[16] 李欣, 黄昆仑, 朱本忠, 唐茂芝, 罗云波. 利用“组学”技术检测转基因作物非期望效应的潜在性. 农业生物技术学报, 2005, 13(6): 802-807.
Li X, Huang K l, Zhu B z, Tang M z, Luo Y b. Potentiality of “Omics” techniques for the detection of unintended effectsin genetically modified crops. Journal of Agricultural Biotechnology, 2005, 13(6): 802-807. (in Chinese)
[17] Mathur C, Kathuria P C, Dahiya P, Singh A B. Lack of detectable allergenicity in genetically modified maize containing “Cry” proteins as compared to native maize based on in silico & in vitro analysis. PLoS One, 2015, 10(2): e0117340.
[18] Agapito-Tenfen S Z, Vilperte V, Benevenuto R F, Rover C M, Traavik T I, Nodari R O.Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC Plant Biology, 2014, 14: 346.
[19] Hoss S, Menzel R, Gessler F, Nguyen H T, Jehle J A, Traunspurger W. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans. Environmental Pollution, 2013, 178: 147-151.
[20] Hendriksma H P, Kuting M, Hartel S, Nather A, Dohrmann A B, Steffan-Dewenter I, Tebbe C C. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS One, 2013, 8(3): e59589.
[21] Zhang L, Huang F, Rogers Leonard B, Chen M, Clark T, Zhu Y C, Wangila D S, Yang F, Niu Y. Susceptibility of Cry1Ab maize-resistant and susceptible strains of sugarcane borer (Lepidoptera: Crambidae) to four individual Cry proteins. Journal of Invertebrate Pathology, 2013, 112(3): 267-272.
[22] Li Y, Meissle M, Romeis J. Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties. Journal of Insect Physiology, 2010, 56(2): 157-164.
[23] 王江, 武奉慈, 刘新颖, 冯树丹, 宋新元. 转基因抗虫耐除草剂复合性状玉米‘双抗12-5’对亚洲玉米螟的抗性及对草甘膦的耐受性研究. 植物保护, 2016, 42(1): 45-50.
Wang J, Wu F C, Liu X Y, Feng S D, Song X Y. Evaluation of transgenic maize ‘Shuangkang 12-5’ with complex traits of insect- resistance and glyphosate-resistance for the resistance to Ostrinia furnacalis and tolerance to glyphosate. Plant Protection, 2016, 42(1): 45-50. (in Chinese)
[24] 刘新颖, 王柏凤, 周琳, 冯树丹, 宋新元. 转cry1Ie基因抗虫玉米IE09S034种植对田间大型土壤动物多样性的影响. 作物杂志, 2016(1): 62-68.
Liu X Y, Wang B F, Zhou L, Feng S D, Song X Y. Effects of cry1Ie on soil macrofauna diversity in transgenic corn IE09S034 fields. Crops, 2016(1): 62-68. (in Chinese)
[25] 刘新颖, 王柏凤, 王江, 冯树丹, 宋新元. 转cry1Ac基因抗虫玉米叶片残体降解对土壤动物群落结构的影响. 植物保护学报, 2016, 43(3): 384-390.
Liu X Y, Wang B F, Wang J, Feng S D, Song X Y. Effects of leaf residue decomposition of cry1Ac-transgenic insect-resistant maize on community structure of soil animals. Journal of Plant Protection, 2016, 43(3): 384-390. (in Chinese)
[26] Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 1996, 236: 302-308.
[27] 于涛, 李耕, 刘鹏, 董树亭, 张吉旺, 赵斌, 柏晗. 玉米早期发育阶段粒位效应的蛋白质组学分析. 中国农业科学, 2016, 49(1): 54-68.
Yu T, Li G, Liu P, Dong S T, Zhang J W, Zhao B, Bai H. Proteomics analysis of grain position effects during early developmental stages of maize. Scientia Agricultura Sinica, 2016, 49(1): 54-68. (in Chinese)
[28] Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1): 44-57.
[29] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32(Database issue): D277-D280.
[30] Pan Y H. Application prospects of proteomicsin detection and study of genetically modified organisms. Journal of Agricultural Science and Technology, 2010, 12(1): 31-34.
[31] Cho J I, Lee G S, Park S C. Global status of GM crop development and commercialization. Journoul of Plant Biotechnology, 2016, 43(2): 147-150. |