中国农业科学 ›› 2017, Vol. 50 ›› Issue (12): 2315-2325.doi: 10.3864/j.issn.0578-1752.2017.12.012

• 植物保护 • 上一篇    下一篇

转基因玉米对田间节肢动物群落多样性的影响

任振涛1,沈文静2,刘标2,薛堃1,2

 
  

  1. 1中央民族大学生命与环境科学学院,北京100081;2环境保护部南京环境科学研究所,南京210042
  • 收稿日期:2016-12-28 出版日期:2017-06-16 发布日期:2017-06-16
  • 通讯作者: 刘标,E-mail:85287064@163.com。薛堃,E-mail:xuekun@muc.edu.cn
  • 作者简介:任振涛,E-mail:rztkkk@163.com
  • 基金资助:
    国家转基因生物新品种培育科技重大专项(2016ZX08012005)、环保公益性行业科研专项(201509044)、中央民族大学一流大学一流学科项目(YLDX01013)

Effects of Transgenic Maize on Biodiversity of Arthropod Communities in the Fields

Ren Zhentao1, Shen Wenjing 2, Liu Biao2, Xue Kun1,2   

  1. 1College of Life and Environmental Sciences, Minzu University of China, Beijing 100081; 2Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042
  • Received:2016-12-28 Online:2017-06-16 Published:2017-06-16

摘要: 【目的】明确转基因抗草甘膦(EPSPS)、抗虫(Bt Cry1Ab)玉米DBN9936对大田节肢动物群落多样性的影响,为转基因作物的生物安全提供基本数据。【方法】于2015年玉米生长季,在吉林四平伊通满族自治县实验基地,对比转基因玉米田与对照田节肢动物群落多样性与结构。在田间隔离条件下,采用直接观察法、陷阱法和纵剖茎秆等方法对田间玉米植株、地表和茎秆内的节肢动物数量和种类进行统计,分析比较节肢动物的功能群和多样性指数、优势集中性指数、均匀性指数等,并对节肢动物群落的相似度进行比较。【结果】玉米材料上的节肢动物群落由13目、44科组成。主要害虫是玉米蚜、双斑萤叶甲和亚洲玉米螟;捕食性天敌主要为草蛉、瓢虫和蜘蛛等。转基因玉米DBN9936整个生育期植株上的亚洲玉米螟、棉铃虫等鳞翅目靶标昆虫数量显著低于受体玉米DBN318和常规玉米先玉335;双斑萤叶甲的数量与受体玉米DBN318基本一致,但明显高于常规种先玉335,这体现出品种间的性状差异,而非转基因引起的次生害虫数量增大;其他各组处理田间非靶标节肢动物数量未发现显著差异。转基因玉米DBN9936喷施2倍草甘膦除草剂后2周和4周,对其田间节肢动物种类及数量进行调查,发现与DBN318、先玉335和未喷施除草剂的DBN9936相比,各个功能群内种类和数量上没有显著差异。收获期调查钻蛀性害虫的数量和危害情况,发现转基因玉米DBN9936的蛀孔数、活虫数、隧道长度和穗尖被害数等指标显著低于DBN318和先玉335,表现出对亚洲玉米螟和棉铃虫明显的抗性。转基因玉米DBN9936与非转基因玉米DBN318(对照)和常规玉米先玉335相比,田间节肢动物物种数、多样性指数、均匀性指数和优势集中性指数等指标随时间变化的趋势基本一致,无显著差异。无论是否喷施除草剂,转基因玉米DBN9936与受体相比,节肢动物群落相似性指数呈现出逐渐上升并最终维持在高水平的变化趋势,即在生长季各个玉米品种的田间节肢动物群落会由最初的有一定差异逐步趋于一致。【结论】在本研究中,不同地块的节肢动物群落多样性的变化趋势基本相同,在7月中下旬至8月中旬出现明显的波动,结合气象条件记录和大田观察,可以认为是干旱和双斑萤叶甲暴发而导致群落多样性水平下降,主要体现在优势集中度上升和均匀度下降两个方面。这表明转基因玉米DBN9936田间节肢动物群落结构与受体品系DBN318和常规种先玉335基本相似,与对照相比该转基因玉米对非靶标节肢动物群落影响无显著差异。

关键词: 转基因玉米, 节肢动物群落, 生物多样性, 优势集中性指数, 均匀性指数

Abstract: 【Objective】 The objective of this study is to assess the effects of transgenic glyphosate-tolerant (EPSPS) and insect-resistant (Bt Cry1Ab) maize DBN9936 on biodiversity of arthropod communities, which will supply basic data for transgenic crop biosafety. 【Method】 In the growing period in 2015, the biodiversity and its structure of arthropod communities in the fields of transgenic maize and its counterpart lines were compared in the experimental base in Yitong Autonomous County for Man Nationality, Siping City, Jilin Province. In the isolated maize field, with the method of observation, traps and observing the longitudinal section of stems, the number of species and individuals in the maize plants, on the ground and in the stems were counted and the functional groups, biodiversity index, dominant concentration index, evenness index and the community similarity were analyzed and compared. 【Result】The arthropod communities in maize fields were composed of 13 orders and 44 families. The main pests included Rhopalosiphum maidis, Monolepta hieroglyphica and Osrtinia furnacalis; the main predatory enemies were lacewings, ladybirds and spiders. The number of target lepidoptera insects, including O. furnacalis and Helicoverpa armigera, from the transgenic maize DBN9936 in the whole growth period was significantly lower than those from the counterpart DBN318 and the conventional line Xianyu 335. The number of M. hieroglyphica from the transgenic maize was similar with the recipient line DBN318, while significantly higher than that from conventional line Xianyu 335, which showed the difference coming from variation between lines, rather than the genetically modification. The number of non-target arthropod in the fields had no significant difference between the other treatments. Sampling at the time of 2 and 4 weeks after spraying glyphosate, the number of specie and individual of arthropod communities in the fields had no significant difference between each two treatments. The number of boring insects and their damage were investigated during harvest, the number of holes, alive pests, the length of tunnel and the number of corns with damaged tip were significantly lower in DBN9936 than those in DBN318 and Xianyu 335, which showed that the transgenic maize DBN9936 had obviously higher resistance to O. furnacalis and H. armigera. Compared with the non-transgenic recipient line maize DBN318 and the regular line Xianyu 335, transgenic maize DBN9936 had the similar dynamic trend within the parameters of the number of species, biodiversity index, dominant concentration index and evenness index, and there was no significant difference. The similarity index of arthropod communities of DBN9936 with or without the herbicide to the recipient line DBN318 were gradually rising to a high level and maintained, which indicated that the difference of the arthropod communications from different treatments would be decrease in growing period.【Conclusion】In the study, the biodiversity dynamics of the arthropod communities of different treatments were similar. Combined climate recordings and field observation, the fluctuation of the dynamics from late July to mid August in 2015 could be regarded as the biodiversity decrease, especially the increase of dominant concentration index and the decrease of evenness index caused by the drought and the outbreak of M. hieroglyphica. These results suggested that the arthropod community structures in the fields of the transgenic maize DBN9936, the counterpart DBN318 and the conventional line Xianyu 335 were similar, and the effects of genetically modified maize on non-target arthropod community were not significant.

Key words: transgenicmaize(Zea mays), arthropod community, biodiversity, dominance index, evenness index