中国农业科学 ›› 2017, Vol. 50 ›› Issue (10): 1781-1791.doi: 10.3864/j.issn.0578-1752.2017.10.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

小麦分蘖期冻害后增施恢复肥的产量挽回效应及其生理机制

李春燕1,杨景1,2,张玉雪1,姚梦浩1,朱新开1,郭文善1   

  1. 1扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心,江苏扬州 225009;2光明米业(集团)有限公司农业技术中心,上海 202171
  • 收稿日期:2016-10-04 出版日期:2017-05-16 发布日期:2017-05-16
  • 通讯作者: 郭文善,Tel:0514-87979339;E-mail:guows@yzu.edu.cn
  • 作者简介:李春燕,E-mail:licy@yzu.edu.cn。杨景,E-mail:1107724580@qq.com。李春燕和杨景为同等贡献作者。
  • 基金资助:
    国家重点研发计划(2016YFD0300107)、江苏省自主创新专项(CX(16)1001)、江苏省农业支撑项目(BE2015340)、扬州大学“高端人才支持计划”项目、江苏高校优势学科建设工程资助项目

Retrieval Effects of Remedial Fertilizer After Freeze Injury on Wheat Yield and Its Mechanism at Tillering Stage

LI ChunYan1, YANG Jing1, 2, ZHANG YuXue1, YAO MengHao1, ZHU XinKai1, GUO WenShan1   

  1. 1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu; 2Agricultural Technology Center of Bright Rice (Group) Limited Company, Shanghai 202171
  • Received:2016-10-04 Online:2017-05-16 Published:2017-05-16

摘要: 【目的】小麦越冬期低温冻害时有发生,影响产量形成,而前人关于越冬期冻害的补救措施报道较少,因此研究分蘖期受冻小麦施用恢复肥挽回产量的效应,探明增施尿素恢复产量的生理原因,可为小麦抗逆栽培提供理论依据。【方法】试验选用小麦品种扬麦16,利用人工智能控温室,设置昼夜温度-2℃/-6℃(2012年)和-2℃/-8℃(2013年),分别处理24、48、72 h,处理结束后5 d调查植株冻害指数。随后一次性增施恢复肥尿素(N 46%)75、150 kg·hm-2(2012)和75、120、180 kg·hm-2(2013)补救,增施尿素后10、20、30 d取主茎展二叶,测定可溶性糖、游离脯氨酸和内源激素含量变化,成熟期测量株高并收获籽粒测产。【结果】分蘖期低温胁迫后扬麦16受冻指数随着胁迫时间的延长由0.2上升到0.5左右。施肥补救后10 d,所有处理植株可溶性糖、游离脯氨酸以及脱落酸(ABA)和玉米素核甘(ZR)含量随胁迫时间延长呈增加趋势,不施肥处理显著高于施恢复肥处理,相同处理时段,随恢复肥施用量增加上述指标呈下降趋势,赤霉素(GA3)含量呈相反变化趋势;增施尿素后20 d,施肥处理可溶性糖和游离脯氨酸含量、ABA和ZR含量较不施肥处理快速下降,GA3含量上升;施肥后30 d,各低温处理的渗透调节物质和内源激素含量已恢复至接近自然对照水平。随低温处理时间延长,小麦产量、基部Ⅰ、Ⅱ节间长度及株高降低,相同处理时段内,基部节间长度、株高及产量恢复和挽回效应随恢复肥施用量增加而提高。【结论】分蘖期受冻小麦根据受冻指数及时适量施用恢复肥能明显缓解低温伤害,表现为植株渗透调节物质含量下降以及激素更趋于平衡,促进新生分蘖发生和基部Ⅰ、Ⅱ节间伸长,一定程度上挽回了产量的损失。研究兼顾产量挽回效应和氮肥偏生产力,提出分蘖期受冻指数为0.2左右的轻度冻害推荐施尿素75 kg·hm-2,受冻指数0.36左右的中度冻害推荐施尿素120 kg·hm-2,受冻指数0.5左右的重度冻害推荐施尿素180 kg·hm-2

关键词: 小麦, 分蘖期, 低温冻害, 恢复肥, 生理调节

Abstract: 【Objective】Freeze injury in wheat often happens and affects wheat yield formation during the wintering stage. There was less study on the remedial measures to recover wheat yield after low temperature stress at wintering stage. Hence, effects of remedial fertilizer after low temperature stress on yield recovery in wheat at tillering stage and its mechanism were studied, which will provide a basis for anti-cultivation technology in wheat. 【Method】The spring wheat cultivar Yangmai16 was treated at -2℃/-6℃(day/night, 2012) and -2℃/-8℃ (day/night, 2013) for 24, 48 and 72 h, respectively, using artificial temperature-controlled phytotron system. Then the different remedial urea (N 46%) amounts of 75, 150 kg·hm-2 (2012) and 75, 120, 180 kg·hm-2 (2013) were all used at a time after low temperature stress. The degree and freezing injury proportion of wheat plant under low temperature stress and the changes of soluble sucrose, proline and endogenous hormone contents in the second leaves from the top on the 10th, 20th and 30th day after applying remedial fertilizer were investigated. Plant height and yield at maturity were also recorded. 【Result】The index of freezing injury increased from 0.2 to 0.5 under longer stress at tillering stage. The contents of soluble sugar, proline, abscisic acid (ABA) and zeatin riboside (ZR) in leaves of the treatment increased under longer stress. These parameters in the treatment without fertilizer amendment were higher than those in the treatment with fertilizer amendment on the 10th day after applying remedial fertilizer. The parameters reduced more rapidly with more applying fertilizer under the same duration time. The content of gibberellines (GA3) decreased gradually with longer stress at tillering stage. The contents of soluble sugar and proline, and the contents of ABA and ZR of these treatments using fertilizer after cold stress gradually declined on the 20th day after applying remedial fertilizer. While the change of GA3 contents was opposite to ABA and ZR contents. All these parameters reached the levels of the controlled plants in natural environment on the 30th day after applying remedial fertilizer. Wheat yield, the first and second basal internode length and plant height all lowered with longer cold stress. With increased fertilizer applying amount under the same treatment duration, the length of wheat plants were better restored and the loss of grain yield was lessened.【Conclusion】Cold injury wheat will recover growth after using the right urea amount scientifically in time depending on the cold index at tillering stage. Osmotic adjustment substance contents declining and hormone contents becoming balance, new tillers emergency and the basal internode length becoming longer were the main reason for increasing grain yield at tillering stage after applying the urea. At tillering stage, considering recovery effect and nitrogen partial factor productivity, 75 kg·hm-2 urea would be recommended for nitrogen amendment when wheat plants were damaged slightly and the cold index was about 0.2. When the cold index was about 0.36, 120 kg·hm-2 urea would be suggested. When the cold index was about 0.50, 180 kg·hm-2 urea was recommended for recovering wheat growth after severe cold damage.

Key words: wheat, tillering stage, cold injury, remedial fertilizer, regulation effect