[1] 李甲贵. 我国葡萄酒消费者行为研究[D]. 杨凌: 西北农林科技大学, 2014.
Li J G. Research on modern China’s wine industry development [D]. Yangling: Northwest Agriculture and Forestry University, 2014. (in Chinese)
[2] Blateyron L, Sablayrolles J M. Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. Journal of Bioscience and Bioengineering, 2001, 91(2): 184-189.
[3] Ishtar Snoek I, Yde Steensma H. Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast, 2007, 24(1): 1-10.
[4] Mauricio J C, Moreno J, Zea L, Ortega J M, Medina M. The effects of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae. Journal of the Science of Food and Agriculture, 1997, 75(2): 155-160.
[5] Thurston P, Quain D, Tubb R. Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae. Journal of the Institute of Brewing, 1982, 88(2): 90-94.
[6] Holcberg I, Margalith P. Alcoholic fermentation by immobilized yeast at high sugar concentrations. European Journal of Applied Microbiology and Biotechnology, 1981, 13(3): 133-140.
[7] Chi Z, Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 1999, 86(6): 1047-1052.
[8] You K M, Rosenfield C L, Knipple D C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Applied and Environmental Microbiology, 2003, 69(3): 1499-1503.
[9] Ma M, Liu Z L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 87(3): 829-845.
[10] Redon M, Guillamon J M, Mas A, Rozes N. Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature. European Food Research and Technology, 2009, 228(5): 833-840.
[11] Calderbank J, Keenan M H J, Rose A H. Plasma-membrane phospholipid unsaturation affects expression of the general amino-acid permease in Saccharomyces-cerevisiae Y185. Journal of General Microbiology, 1985, 131: 57-65.
[12] Rosa M F, Sacorreia I. Ethanol tolerance and activity of plasma-membrane ATPase in Kluyveromyces-marxianus and Saccharomyces-cerevisiae. Enzyme and Microbial Technology, 1992, 14(1): 23-27.
[13] Varela C, Torrea D, Schmidt S A, Ancin-Azpilicueta C, Henschke P A. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chemistry, 2012, 135(4): 2863-2871.
[14] Bauman J A, Gallander J F, Peng A C. Effect of maturation on the lipid content of Concord grapes. American Journal of Enology and Viticulture, 1977, 28(4): 241-244.
[15] Gallander J F, Peng A C. Lipid and fatty acid compositions of different grape types. American Journal of Enology and Viticulture, 1980, 31(1): 24-27.
[16] Santos L P, Morais D R, Souza N E, Cottica S M, Boroski M, Visentainer J V. Phenolic compounds and fatty acids in different parts of Vitis labrusca and V. vinifera grapes. Food Research International,2011, 44(5): 1414-1418.
[17] Ancín C, Ayestarán B, García A, Garrido J. Influence of vacuum filtration of Viura must on the concentration of fatty acids and their utilization in fermentation. Food Research International, 1996, 29(8): 763-770.
[18] Valero E, Millán C, Ortega J M. Influence of pre- fermentative treatment on the fatty acid content of Saccharomyces cerevisiae (M330-9) during alcoholic fermentation of grape must. Journal of Bioscience and Bioengineering, 2001, 91(2): 117-122.
[19] Duan L L, Shi Y, Jiang R, Yang Q, Wang Y Q, Liu P T, Duan C Q, Yan G L. Effects of adding unsaturated fatty acids on fatty acid composition of Saccharomyces cerevisiae and major volatile compounds in wine. South Africa Journal of Enology and Viticulture. 2015, 36(2): 285-295.
[20] Yunoki K, Yasui Y, Hirose S, Ohnishi M. Fatty acids in must prepared from 11 grapes grown in Japan: Comparison with wine and effect on fatty acid ethyl ester formation. Lipids. 2005, 40 (4): 361-367.
[21] Valero E, Millan M C, Mauricio J C, Ortega J. Effect of grape skin maceration on sterol, phospholipid, and fatty acid contents of Saccharomyces cerevisiae during alcoholic fermentation. American Journal of Enology and Viticulture, 1998, 49(2): 119-124.
[22] Delfini C, Conterno L, Giacosa D, COCito C, Ravaglia S, Bardi L. Influence of clarification and suspended solid contact on the oxygen demand and long-chain fatty acid contents of free run, macerated and pressed grape musts, in relation to acetic acid production. Wein-Wissenschaft, 1992, 47(3): 69-75.
[23] Aceituno F F, Orellana M, Torres J, Mendoza S, Slater A W, Melo F, Agosin E. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Applied and Environmental Microbiology, 2012, 78(23): 8340-8352.
[24] 中华人民共和国国家标准. 葡萄酒、果酒通用分析方法. GB/T 15038—2006. 北京: 中国标准出版社, 2006-11-01.
National Standard of the People's Republic of China. Analytical methods of wine and fruit wine. GB/T 15038-2006. Beijing: China standard press, 2006-11-01. (in Chinese)
[25] Saha B C, Cotta M A. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress, 2006, 22(2): 449-453.
[26] López E F, Gómez E F. Simultaneous determination of the major organic acids, sugars, glycerol, and ethanol by HPLC in grape musts and white wines. Journal of Chromatographic Science, 1996, 34(5): 254-257.
[27] Guilloux-Benatier M, Le Fur Y, Feuillat M. Influence of fatty acids on the growth of wine microorganisms Saccharomyces cerevisiae and Oenococcus oeni. Journal of Industrial Microbiology and Biotechnology, 1998, 20(3/4): 144-149.
[28] Wolff R, Fabien R. The use of isopropanol for fat extraction of dairy products and for the subsequent esterification of fatty acids response factor; low calorie spread. Lait, 1989: 69.
[29] Zhang M, Xu Q, Duan C, Qu W, Wu Y. Comparative study of aromatic compounds in young red wines from Cabernet Sauvignon, Cabernet Franc, and Cabernet Gernischet varieties in China. Journal of Food Science, 2007, 72(5): C248-C252.
[30] Wu Y, Zhu B, Tu C, Duan C, Pan Q. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage. Journal of Agricultural and Food Chemistry, 2011, 59(9): 4923-4931.
[31] Howard K L, Mike J H, Riesen R. Validation of a solid-phase microextraction method for headspace analysis of wine aroma components. American Journal of Enology and Viticulture, 2005, 56(1): 37-45.
[32] Jetti R, Yang E, Kurnianta A, Finn C, Qian M. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. Journal of Food Science, 2007, 72(7): S487-S496.
[33] Guth H. Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 1997, 45(8): 3027-3032.
[34] Li H, Tao Y S, Wang H, Zhang L. Impact odorants of Chardonnay dry white wine from Changli county (China). European Food Research and Technology, 2008, 227(1): 287-292.
[35] Copyright J. Leffingwell & Associates. http://www.leffingwell. com./esters1.htm. Accessed 1999.
[36] Fazzalari F. Compilation of odor and taste threshold values data. ASTM data series. 1978.
[37] Ferreira V, Culleré L, López R, Cacho J. Determination of important odor-active aldehydes of wine through gas chromatography– mass spectrometry of their O-(2, 3, 4, 5, 6-pentafluorobenzyl) oximes formed directly in the solid phase extraction cartridge used for selective isolation. Journal of Chromatography A, 2004, 1028(2): 339-345.
[38] Boelens M, Van Gemert L. Organoleptic properties of aliphatic aldehydes. Perfumer & Flavorist, 1987, 12(5): 31-43.
[39] Deluc L, Quilici D, Decendit A, Grimplet J, Wheatley M, Schlauch K, Mérillon J M, Cushman J, Cramer G. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 2009, 10(1): 212.
[40] Peinado R A, Mauricio J C, Moreno J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chemistry, 2006, 94(2): 232-239.
[41] Yang D S, Shewfelt R L, Lee K S, Kays S J. Comparison of odor-active compounds from six distinctly different rice flavor types. Jounal of Agricultural and Food Chemistry, 2008, 56(8): 2780-2787.
[42] Aznar M, López R, Cacho J F, Ferreira V. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. Journal of Agricultural and Food Chemistry, 2001, 49(6): 2924-2929.
[43] Buettner A, Mestres M, Fischer A, Guasch J, Schieberle P. Evaluation of the most odour-active compounds in the peel oil of clementines (Citrus reticulata Blanco cv. clementine). European Food Research and Technology, 2003, 216(1): 11-14.
[44] Selli S, Canbas A, Cabaroglu T, Erten H, Günata Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chemistry, 2006, 94 (3): 319-326.
[45] Wen Y Q, He F, Zhu B Q, Lan Y B, Pan Q H, Li C Y, Reeves M J, Wang J. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chemistry, 2014, 152: 29-36.
[46] 段亮亮, 田兰兰, 郭玉蓉, 邓红, 李卓, 王晓宇. 采用主成分分析法对六个苹果品种果实香气分析及分类. 食品工业科技, 2012, 33(3): 85-88.
Duan L L, Tian L L, Guo Y R, Deng H, Li Z, Wang X Y. Principle component analysis and classification of aroma components of six apple cultivars. Science and Technology of Food Industry, 2012, 33(3): 85-88. (in Chinese)
[47] Whiting G C. Organic acid metabolism of yeasts during fermentation of alcoholic beverages-a review. Journal of the Institute of Brewing, 1976, 82(2): 84-92.
[48] Chirala S S. Coordinated regulation and inositol-mediated and fatty acid mediated repression of fatty-acid synthase genes in Saccharomyces-cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(21): 10232-10236.
[49] Hasslacher M, Ivessa A S, Paltauf F, Kohlwein S D. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid-metabolism. Journal of Biological Chemistry, 1993, 268(15): 10946-10952.
[50] Saerens S, Delvaux F, Verstrepen K, Van Dijck P, Thevelein J, Delvaux F. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 2008, 74(2): 454-461.
[51] Bartowsky E J, Pretorius I S. Microbial formation and modification of flavor and off-flavor compounds in wine//Konig H, Unden G, Frohlich J. Biology of Microorganisms on Grapes, in Must and in Wine. Berlin, Germany: Spring Berlin Heidelberger, 2009: 209-231.
[52] Procopio S, Qian F, Becker T. Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. European Food Research and Technology, 2011, 233 (5): 721-729.
[53] Calderbank J, Keenan M H, Rose A H, Holman G D. Accumulation of amino acids by Saccharomyces cerevisiae Y185 with phospholipids enriched in different fatty-acyl residues: A statistical analysis of data. Journal of General Microbiology, 1984, 130(11): 2817-2824.
[54] Fujii T, Kobayashi O, Yoshimoto H, Furukawa S, Tamai Y. Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Applied and Environmental Microbiology, 1997, 63(3): 910-915.
[55] Juan F S, Cacho J, Ferreira V, Escudero A. Aroma chemical composition of red wines from different price categories and its relationship to quality. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5045-5056.
[56] Schievano E, D'Ambrosio M, Mazzaretto I, Ferrarini R, Magno F, Mammi S, Favaro G. Identification of wine aroma precursors in Moscato Giallo grape juice: A nuclear magnetic resonance and liquid chromatography-mass spectrometry tandem study. Talanta, 2013, 116: 841-851. |