[1] |
GASSER R B, SCHWARZ E M, KORHONEN P K, YOUNG N D. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. Advances in Parasitology, 2016,93:519-567.
doi: 10.1016/bs.apar.2016.02.015
pmid: 27238012
|
[2] |
郭筱璐, 杨怡, 施宇, 黄艳, 时恒枝, 张玲, 周静茹, 陈学秋, 杜爱芳. 国内羊胃肠道寄生虫流行病学调查及捻转血矛线虫系统进化分析. 中国兽医学报, 2018,38(7):1332-1337.
|
|
GUO X L, YANG Y, SHI Y, HUANG Y, SHI H Z, ZHANG L, ZHOU J R, CHEN X Q, DU A F. The epidemical survey of sheep gastrointestinal parasites in partial areas of china. Chinese Journal of Veterinary Science, 2018,38(7):1332-1337. (in Chinese)
|
[3] |
BESIER R B, KAHN L P, SARGISON N D, VAN WYK J A. The Pathophysiology, Ecology and Epidemiology of Haemonchus contortus Infection in Small Ruminants. Advances in Parasitology, 2016,93:95-143.
|
[4] |
韦海典, 陈学秋, 黄艳, 时恒枝, 周静茹, 吴飞, 杜爱芳, 杨怡. 捻转血矛线虫Hc-FAR-4蛋白的表达特性及其与配体结合能力分析. 中国农业科学, 2019,52(17):3059-3068.
|
|
WEI H D, CHEN X Q, HUANG Y, SHI H Z, ZHOU J R, WU F, DU A F, YANG Y. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus. Scientia Agricultura Sinica, 2019,52(17):3059-3068. (in Chinese)
|
[5] |
WANG C Q, LI F F, ZHANG Z Z, YANG X, AHMAD A A, LI X R, DU A F, HU M. Recent research progress in China on Haemonchus contortus. Frontiers in microbiology, 2017,8:1509-1509.
|
[6] |
郑秀平, 丁豪杰, 郭筱璐, 杨怡, 黄艳, 陈学秋, 周前进, 杜爱芳. 捻转血矛线虫Hc-daf-22基因的原核表达及重组蛋白酶活性测定. 中国农业科学, 2017,50(8):1535-1542.
|
|
ZHENG X P, DING H J, GUO X L, YANG Y, HUANG Y, CHEN X Q, ZHOU Q J, DU A F. Characteristics of Hc-daf-22 gene from Haemonchus contortus: crokaryotic expression and its enzymatic activity. Scientia Agricultura Sinica, 2017,50(8):1535-1542. (in Chinese)
|
[7] |
BORDES L, DUMONT N, LESPINE A, SOUIL E, SUTRA J F, PREVOT F, GRISEZ C, ROMANOS L, DAILLEDOUZE A, JACQUIET P. First report of multiple resistance to eprinomectin and benzimidazole in Haemonchus contortus on a dairy goat farm in France. Parasitology International, 2020,76:1383-5769.
|
[8] |
KOTZE A C, PRICHARD R K. Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis. Advances in Parasitology, 2016,93:397-428.
|
[9] |
严若峰, 徐立新, 孙延鸣, 赵光伟, 李祥瑞. 捻转血矛线虫DNA疫苗的构建及山羊免疫保护性试验. 中国农业科学, 2007,40(12):2869-2875 .
|
|
YAN R F, XU L X, SUN Y M, ZHAO G W, LI X R. Construction of DNA Vaccines for Haemonchus contortus and the Protective Effects in Goats. Scientia Agricultura Sinica, 2007,40(12):2869-2875. (in Chinese)
|
[10] |
PONKA P, SHEFTEL A D, ENGLISH A M, SCOTT BOHLE D, GARCIA-SANTOS D. Do Mammalian Cells Really Need to Export and Import Heme? Trends in Biochemical Sciences, 2017,42(5):395-406.
|
[11] |
PERNER J, GASSER R B, OLIVEIRA P L, KOPACEK P. Haem biology in metazoan parasites - 'The bright side of haem'. Trends Parasitology, 2019,35(3):213-225.
|
[12] |
SINCLAIR J, HAMZA I. Lessons from bloodless worms: heme homeostasis in C. Elegans. Biometals, 2015,28(3):481-489.
|
[13] |
BOUCHERY T, FILBEY K, SHEPHERD A, CHANDLER J, PATEL D, SCHMIDT A, CAMBERIS M, PEIGNIER A, SMITH A A T, JOHNSTON K, PAINTER G, PEARSON M, GIACOMIN P, LOUKAS A, BOTTAZZI M E, HOTEZ P, LEGROS G. A novel blood-feeding detoxification pathway in Nippostrongylus brasiliensis L3 reveals a potential checkpoint for arresting hookworm development. PLoS Pathogens, 2018,14(3):e1006931.
doi: 10.1371/journal.ppat.1006931
pmid: 29566094
|
[14] |
LUCK A N, YUAN X J, VORONIN D, SLATKO B E, HAMZA I, FOSTER J M. Heme acquisition in the parasitic filarial nematode Brugia malayi. The FASEB Journal, 2016,30(10):3501-3514.
|
[15] |
WANG T, MA G, ANG C S, KORHONEN P K, KOEHLER A V, YOUNG N D, NIE S, WILLIAMSON N A, GASSER R B. High throughput LC-MS/MS-based proteomic analysis of excretory- secretory products from short-term in vitro culture of Haemonchus Contortus. Journal of Proteomics, 2019,204:103375.
pmid: 31071474
|
[16] |
SHU Q T, AMBER G, GEOFFREY N G, MALCOLM K J. Heme and blood-feeding parasites: friends or foes? Parasites & Vectors, 2010,3:108.
pmid: 21087517
|
[17] |
ZHOU J R, BU D R, ZHAO X F, WU F, CHEN X Q, SHI H Z, YAO C Q, DU A F, YANG Y. Hc-hrg-2, a glutathione transferase gene, regulates heme homeostasis in the blood-feeding parasitic nematode Haemonchus contortus. Parasites & Vectors, 2020,13(1):40.
doi: 10.1186/s13071-020-3911-z
pmid: 31996262
|
[18] |
RENBERG R L, YUAN X, SAMUEL T K, MIGUEL D C, HAMZA I, ANDREWS N W, FLANNERY A R. The Heme Transport Capacity of LHR1 Determines the extent of virulence in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 2015,9(5):e0003804.
|
[19] |
TOH S Q, GOBERT G N, MALAGON MARTINEZ D, JONES M K. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. The FEBS Journal, 2015,282(18):3632-3646.
doi: 10.1111/febs.13368
pmid: 26153121
|
[20] |
MERLI M L, PAGURA L, HERNANDEZ J, BARISON M J, PRAL E M, SILBER A M, CRICCO J A. The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Neglected Tropical Diseases, 2016,10(1):e0004359.
|
[21] |
KOROLNEK T, ZHANG J, BEARDSLEY S, SCHEFFER G L, HAMZA I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metabolism, 2014,19(6):1008-1019.
doi: 10.1016/j.cmet.2014.03.030
pmid: 24836561
|
[22] |
GIETZ R D, WOODS R A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 2002,350:87-96.
|
[23] |
YUAN X, PROTCHENKO O, PHILPOTT C C, HAMZA I. Topologically conserved residues direct heme transport in HRG-1-related proteins. The Journal of Biological Chemistry, 2012,287(7):4914-4924.
pmid: 22174408
|
[24] |
RAJAGOPAL A, RAO A U, AMIGO J, TIAN M, UPADHYAY S K, HALL C, UHM S, MATHEW M K, FLEMING M D, PAW B H, KRAUSE M, HAMZA I. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008,453(7198):1127-1131.
doi: 10.1038/nature06934
pmid: 18418376
|
[25] |
孟雁, 孔繁瑶. 捻转血矛线虫离体培养的研究. 畜牧兽医学报, 1993, (1):74-80.
|
|
MENG Y, KONG F Y. Study on in vitro culture of Haemonchus contortus. Acta Veterinaria et Zootechnica Sinica, 1993, (1):74-80. (in Chinese)
|
[26] |
HUANG Y, ZHENG X P, ZHANG H L, DING H J, GUO X L, YANG Y, CHEN X Q, ZHOU Q J, DU A F. Site-directed mutagenesis study revealed three important residues in Hc-DAF-22, a key enzyme regulating diapause of Haemonchus contortus. Frontiers in Microbiology, 2017,8:2176.
pmid: 29167662
|
[27] |
黄晓翠, 时恒枝, 陈学秋, 黄艳, 周静茹, 吴飞, 杨怡, 杜爱芳. 捻转血矛线虫Hc-TTR-51蛋白的定位及功能. 中国兽医学报, 2019,39(12):2342-2349.
|
|
HUANG X C, SHI H Z, CHEN X Q, HUANG Y, ZHOU J R, WU F, YANG Y, DU A F. Localization and preliminary function of Hc-TTR-51 in Haemonchus Contortus. Chinese Journal of Veterinary Science, 2019,39(12):2342-2349. (in Chinese)
|
[28] |
DI W, GASSER R B, HE L, LI F, LIU X, ZHOU C, ZHOU Y, FANG R, ZHAO J, HU M. A serine/threonine-specific protein kinase of Haemonchus contortus with a role in the development. The FASEB Journal, 2020,34(2):2075-2086.
doi: 10.1096/fj.201900888RR
pmid: 31907982
|
[29] |
GOLLUB E G, LIU K P, DAYAN J, ADLERSBERG M, SPRINSON D B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. Journal of Biological Chemistry, 1977,252(9):2846-2854.
|
[30] |
CRISP R J, POLLINGTON A, GALEA C, JARON S, YAMAGUCHI- IWAI Y, KAPLAN J. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. The Journal of Biological Chemistry, 2003,278(46):45499-45506.
|
[31] |
CHEN C, SAMUEL T K, KRAUSE M, DAILEY H A, HAMZA I. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. The Journal of Biological Chemistry, 2012,287(12):9601-9612.
doi: 10.1074/jbc.M111.307694
pmid: 22303006
|