中国农业科学 ›› 2014, Vol. 47 ›› Issue (14): 2853-2862.doi: 10.3864/j.issn.0578-1752.2014.14.015

• 畜牧·兽医·资源昆虫 • 上一篇    下一篇

基于SSR标记的中美紫花苜蓿品种遗传多样性研究

 强海平1, 余国辉1, 刘海泉1, 高洪文1, 刘贵波2, 赵海明2, 王赞1   

  1. 1、中国农业科学院北京畜牧兽医研究所,北京 100193;
    2、河北省农林科学院旱作农业研究所,河北衡水 053000
  • 收稿日期:2013-11-15 出版日期:2014-07-15 发布日期:2014-05-14
  • 通讯作者: 王赞,Tel:010-62816008;E-mail:wangzan@caas.cn
  • 作者简介:强海平,E-mail:haiping2012321@163.com
  • 基金资助:

    国家自然科学基金(31272495)、农业部牧草种质资源保护项目、“十二五”科技支撑计划(2011BAD17B01)

Genetic Diversity and Population Structure of Chinese and American Alfalfa(Medicago Sativa. L) Germplasm Assessed by SSR Markers

 QIANG  Hai-Ping-1, YU  Guo-Hui-1, LIU  Hai-Quan-1, GAO  Hong-Wen-1, LIU  Gui-Bo-2, ZHAO  Hai-Ming-2, WANG  Zan-1   

  1. 1、Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193;
    2、Institute of Dry Farming, Hebei Academy of Agroforestry Sciences, Hengshui 053000, Hebei
  • Received:2013-11-15 Online:2014-07-15 Published:2014-05-14

摘要: 【目的】紫花苜蓿是世界上最重要的栽培牧草。传统的育种方式对其产量及品质的改良幅度多年来徘徊不前,已经远远不能满足生产需要。对于品种的改良,一方面依赖于所掌握资源的数量,另一方面则是对其农艺性状遗传基础的了解程度。本试验基于SSR分子标记,研究现有中美两国的紫花苜蓿品种遗传变异,分析两国紫花苜蓿种质资源的遗传多样性和群体结构,为利用全基因组关联分析发掘紫花苜蓿重要产量与品质性状显著关联的优异标记、等位位点提供基础,为分子育种提供信息,加快育种进程。【方法】利用覆盖紫花苜蓿全基因组的40对SSR分子标记(每条染色体上选取3-9对SSR标记),采用基于测序的基因型鉴定技术对中美16个紫花苜蓿主栽品种的100个基因型个体(中国每个品种8个基因型个体,美国每个品种4个基因型个体)进行全基因组扫描分析。利用基于混合模型的Structure软件分析紫花苜蓿的群体结构。设定群体数K的估计值范围为1-6,将MCMC(Markov chain monte carlo) 开始时的不作数迭代(length of burn-in period) 设为10 000次,将不作数迭代后的MCMC设为100 000次,每个K值重复数为10次。采用了两种方法来确定最优的群体数K的值,结果由Structure Harvester和Distruct软件来展示。对Structure群体结构结果进一步用主成分分析和聚类分析进行验证。根据群体结构结果,对全体材料及不同群体进行遗传多样性分析。【结果】40对覆盖紫花苜蓿全基因组的SSR分子标记共检测到446个等位基因,每个位点等位基因范围为3-27个,平均每个位点等位基因数为11.2个;基因多样性的变异范围为0.542-0.908,平均值为0.742;多态信息含量的变异范围为0.493-0.901,平均值为0.707。这些参数显示了中美紫花苜蓿所包含的遗传多样性信息含量较高。其中,mtic238、mtic188、bf111、afctt1、bf641851、maa660456、aw361等位点上表现较高的遗传多样性,表明这些位点可以较好地反映中美紫花苜蓿品种的遗传多样性,适用于中美紫花苜蓿品种的遗传多样性检测。就不同染色体而言,第二条和第八条染色体上分布的SSR标记揭示的遗传多样性较高,而第一条相对较低。基于混合模型的方法对紫花苜蓿全体基因型进行群体结构分析,两种不同方法均显示确定最优的群体数K值为2,中美两国16个紫花苜蓿品种共100个基因型个体基本按照来源分为两个亚群体,群体间有少量混杂的情况发生。主成分分析和聚类分析与群体结构的分析结果相一致。中国紫花苜蓿品种多样性略高于美国,但差异不显著。【结论】中美两国紫花苜蓿材料蕴含了比较丰富的遗传变异,显示了较高水平的基因多样性。中美群体间的遗传多样性水平存在一定的差异,中国紫花苜蓿种质多样性水平略高于美国。群体结构不严格按照来源国家的划分而区分,这一现象与紫花苜蓿异花授粉与广泛的基因交流有着密切的关系。

关键词: 紫花苜蓿 , 四倍体 , SSR分子标记 , 遗传多样性 , 群体结构

Abstract: 【Objective】Alfalfa is the most important cultivated forage across the world. However, for little improvement in forage yield and quality in recent years, conventional breeding methods are far from satisfying the practical need. On the one hand, the improvement in cultivars relies on the quantity of breeding resources, on the other hand, it relies on the understanding of the genetic basis of agronomic traits. Based on SSR markers, the study was conducted to analyze the genetic diversity and population structure of the germplasm from China and the United States and provide basic information on mining beneficial markers and alleles significantly associated with important quantitative and quality traits of alfalfa when using genome-wide association study to facilitate breeding process.【Method】In total, 40 SSR loci, covered the entire alfalfa genome with 3 to 9 SSR loci chosen on each chromosome, were used to conduct the genomic scanning of a collection of 100 Chinese and American alfalfa genotypes out of 16 main cultivars and to determine the genetic diversity and population structure. For Chinese cultivars, 8 genotypes were chosen for each cultivar; while for American cultivars, 4 genotypes per cultivar. Based on the admixture model, the software program STRUCTURE was used to determine the population structure of alfalfa. The optimal value of K (the number of clusters) was deducted by evaluating K=1-6. Length of burn-in of the Markov Chain Monte Carlo (MCMC) iterations was set to 10 000 and data were collected over 100 000 MCMC iterations in each run. Ten iterations per K were conducted. The optimal value of K was identified using two methods. The result was displayed by Structure Harvester and Distruct. Further, the principle component analysis and clustering analysis were conducted to justify the result of population structure. Based on the result of population structure, the genetic diversity of all samples and two populations were analyzed.【Result】A total of 446 alleles were detected using 40 SSR markers while 11.2 alleles was detected on average per locus with the range of 3-27, expected heterozygosity was 0.742 on average with the range of 0.493-0.901 and polymorphism information content (PIC) was 0.707 with the range of 0.493-0.901. These parameters indicated high genetic information in Chinese and American alfalfa cultivar resources. For the high genetic diversity displayed by mtic238, mtic188, bf111, afctt1, bf641851, maa660456, aw361, etc., they were suitable to disclose the genetic diversity in Chinese and American alfalfa. In terms of different chromosomes, the second and eighth chromosomes possessed relatively high genetic diversity while the first relatively low. In the analysis of population structure based on the admixture model, two different methods determined the optimal K was 2, which meant 100 genotypes from 16 cultivars could be grouped into two sub-populations even with certain discrepancy. The principle component analysis and clustering analysis were consistent with the analysis of population structure. The genetic diversity of Chinese cultivars was slightly higher than American’s, but not significant. 【Conclusion】 The germplasms from China and the United States were relatively highly diversified and variable in genetic analyses, revealing high genetic diversity. Difference exists in the diversity of genotypes of both countries: Chinese germplasm is slightly higher than those from America. The fact that the population structure of all genotypes was not strictly consistent with the original countries is credited to the allogamy and wide genetic exchange in alfalfa.

Key words: alfalfa , tetraploid , SSR marker , genetic diversity , population structure