[1]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406.[2]Choi H I, Hong J H, Ha J O, Kang J Y, Kim S Y. ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry, 2000, 275(3): 1723-1730.[3]Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant Cell, 2002, 14(2): 343-357.[4]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11632-11637.[5]Abe M, Katsumata H, Komeda Y, Takahashi T. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 2003, 130(4): 635-643.[6]Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 2003, 17(8): 1043-1054.[7]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold- induced COR gene expression. The Plant Journal, 1998, 16(4): 433-442.[8]Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science, 2003, 301(5631): 331-333.[9]Morgan R. Hox genes: A continuation of embryonic patterning? Trends in Genetics, 2006, 22(2): 67-69.[10]Wang K C, Helms J A, Chang H Y. Regeneration, repair and remembering identity: The three Rs of Hox gene expression. Trends in Cell Biology, 2009, 19(6): 268-275.[11]Ariel F D, Manavella P A, Dezar C A, Chan R L. The true story of the HD-Zip family. Trends in Plant Science, 2007, 12(9): 419-426.[12]Ciarbelli A R, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I. The Arabidopsis homeodomain-leucine zipper II gene family: Diversity and redundancy. Plant Molecular Biology, 2008, 68(4/5): 465-478.[13]Henriksson E, Olsson A S B, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiology, 2005, 139(1): 509-518.[14]Frank W, Phillips J, Salamini F, Bartels D. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. The Plant Journal, 1998, 15(3): 413-421.[15]Johannesson H, Wang Y, Engstrom P. DNA-binding and dimerization preferences of Arabidopsis homeodomain-leucine zipper transcription factors in vitro. Plant Molecular Biology, 2001, 45(1): 63-73.[16]Meijer A H, Scarpella E, vanDijk E L, Qin L, Taal A J C, Rueb S, Harrington S E, McCouch S R, Schilperoort R A, Hoge J H C. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. The Plant Journal, 1997, 11(2): 263-276.[17]Gago G M, Almoguera C, Jordano J, Gonzalez D H, Chan R L. Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell and Environment, 2002, 25(5): 633-640.[18]Wang Y, Henriksson E, Soderman E, Henriksson K N, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Developmental Biology, 2003, 264(1): 228-239.[19]Olsson A S B, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Molecular Biology, 2004, 55(5): 663-677.[20]Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. The EMBO Journal, 2002, 21(12): 3029-3038.[21]Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes & Development, 2005, 19(23): 2811-2815.[22]Morelli G, Ruberti I. Light and shade in the photocontrol of Arabidopsis growth. Trends in Plant Science, 2002, 7(9): 399-404.[23]Prigge M J, Otsuga D, Alonso J M, Ecker J R, Drews G N, Clark S E. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell, 2005, 17(1): 61-76.[24]Kubo H, Peeters A J M, Aarts M G M, Pereira A, Koornneef M. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. The Plant Cell, 1999, 11(7): 1217-1226.[25]Otsuga D, DeGuzman B, Prigge M J, Drews G N, Clark S E. REVOLUTA regulates meristem initiation at lateral positions. The Plant Journal, 2001, 25(2): 223-236.[26]Guan X Y, Li Q J, Shan C M, Wang S, Mao Y B, Wang L J, Chen X Y. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiologia Plantarum, 2008, 134(1): 174-182.[27]Mattsson J, Söderman E, Svenson M, Borkird C, Engström P. A new homeobox-leucine zipper gene from Arabidopsis thaliana. Plant Molecular Biology, 1992, 18(5): 1019-1022.[28]Schena M, Davis R W. HD-Zip proteins: Members of an Arabidopsis homeodomain protein superfamily. Proceedings of the National Academy of Sciences of the USA, 1992, 89(9): 3894-3898.[29]Aso K, Kato M, Banks J A, Hasebe M. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Molecular Biology and Evolution, 1999, 16(4): 544-552.[30]Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Molecular Biology and Evolution, 2001, 18(4): 491-502.[31]王宏, 李刚波, 张大勇, 蔺经, 盛宝龙, 韩金龙, 常有宏. 植物HD-Zip转录因子的生物学功能. 遗传, 2013, 35(10): 1179-1188.Wang H, Li G B, Zhang D Y, Lin J, Sheng B L, Han J L, Chang Y H. Biological functions of HD-Zip transcription factors. Hereditas, 2013, 35(10): 1179-1188. (in Chinese)[32]Cheng W H, Endo A, Zhou L, Penney J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 2002, 14(11): 2723-2743.[33]Himmelbach A, Iten M, Grill E. Signalling of abscisic acid to regulate plant growth. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998, 353(1374): 1439-1444.[34]Leung J, Giraudat J. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222.[35]Mccarty D R. Genetic-control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 71-93.[36]郝格格, 孙忠富, 张录强, 杜克明. 脱落酸在植物逆境胁迫研究中的进展. 中国农学通报, 2009, 25(18): 212-215.Hao G G, Sun Z F, Zhang L Q, Du K M. A research overview of the plant resistance to adverse environment by using abscisic acid. Chinese Agricultural Science Bulletin, 2009, 25(18): 212-215. (in Chinese)[37]Zhang S X, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B F. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 2012, 80(6): 571-585.[38]Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J, Park J, Lee S C, Hanada A, Yamaguchi S, Lee I J, Kim S K, Yun D J, Soderman E, Cheon C I. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant and Cell Physiology, 2010, 51(9): 1537-1547.[39]Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in medicago truncatula requires the HD-Zip I transcription factor HB1. The Plant Cell, 2010, 22(7): 2171-2183.[40]Song S Y, Chen Y, Zhao M G, Zhang W H. A novel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environmental and Experimental Botany, 2012, 80: 1-9.[41] Hu X, Zhang C R, Xie H, Huang X, Chen Y F, Huang X L. The expression of a new HD-Zip II gene, MSHB1, involving the inhibitory effect of thidiazuron on somatic embryogenic competence in alfalfa (Medicago sativa L. cv. Jinnan) callus. Acta Physiologiae Plantarum, 2012, 34(3): 1067-1074. |