中国农业科学 ›› 2021, Vol. 54 ›› Issue (21): 4694-4708.doi: 10.3864/j.issn.0578-1752.2021.21.018
• 研究简报 • 上一篇
收稿日期:
2021-01-18
接受日期:
2021-06-28
出版日期:
2021-11-01
发布日期:
2021-11-09
通讯作者:
范凯
作者简介:
联系方式:叶方婷,E-mail: 基金资助:
YE FangTing(),PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai()
Received:
2021-01-18
Accepted:
2021-06-28
Online:
2021-11-01
Published:
2021-11-09
Contact:
Kai FAN
摘要:
【目的】基于睡莲基因组鉴定睡莲bZIP(basic leucine zipper)家族成员,并对其进行分析,以揭示睡莲bZIP家族的分子进化和功能。【方法】从Waterlily Pond数据库获取睡莲基因组序列,利用HMMER3.0程序识别睡莲的bZIP家族成员,并使用CDD程序进一步确认其含有的保守bZIP结构域,使用IQ-tree软件构建系统进化树。利用ExPASy和SOPMA在线网站进行蛋白质结构分析,通过MEME程序进行保守基序分析,使用MCScan和Circos软件对基因复制事件进行分析以及可视化展示。从NCBI下载睡莲转录组数据(SRA Study:SRP222853),用R软件对睡莲bZIP家族成员表达数据的Pearson相关系数(PCC)进行计算和可视化分析,使用Cytoscape软件对NcbZIP成员之间的表达数据关系进行分析。【结果】从睡莲基因组中共鉴定出46个bZIP家族成员,按成员在染色体上的分布命名为NcbZIP01—NcbZIP46。根据系统进化分析可以将睡莲bZIP家族成员分为A、B、C、D、E、G、H、I、J和S共10个亚家族,其中A亚家族所含成员最多(11个),相同亚家族成员具有相似的保守结构域和基因结构。理化性质分析表明,睡莲bZIP家族成员蛋白质长度介于101—1 898 aa,分子量大小介于12.04—214.64 kD。染色体定位分析发现,睡莲共有14条染色体,46个bZIP家族成员不均匀地分布在其中的10条染色体上,其中1号染色体上分布最多。睡莲bZIP基因家族发生10个复制事件,其中9个片段复制事件,1个串联复制事件,A亚家族所含基因复制事件最多(3次)。对NcbZIP成员在不同组织下的表达进行分析,根据表达情况分为Ⅰ、Ⅱ和Ⅲ组,Ⅰ组成员在所有组织中均高度表达,Ⅱ组成员几乎在所有组织中均不表达,Ⅲ组成员在不同组织中表达水平各不相同,其中C、D和G亚家族的大部分成员集中在Ⅲ组。通过睡莲bZIP成员表达量的Pearson相关系数分析,发现NcbZIP45与所有NcbZIP成员之间的相关性最高。【结论】在睡莲基因组中鉴定出46个bZIP成员,分为10个亚家族,不均匀地分布在14条染色体上,结构进化保守,组织表达模式多样。
叶方婷,潘鑫峰,毛志君,李兆伟,范凯. 睡莲转录因子bZIP家族的分子进化以及功能分析[J]. 中国农业科学, 2021, 54(21): 4694-4708.
YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata[J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
表1
本研究中NcbZIP成员的鉴定及结构分析"
名称 Name | 位点名称 Locus name | 亚家族 Subfamily | 蛋白质长度 Protein length (aa) | 分子量 Molecular weight (kD) | 理论pI Theoretical pI | α-螺旋 α -helix | 延伸链 Extended strand | β-折叠 β -turn | 无规则卷曲 Random coil |
---|---|---|---|---|---|---|---|---|---|
NcbZIP01 | GWHPAAYW000832 | D | 418 | 46.54 | 6.09 | 215 | 19 | 9 | 175 |
NcbZIP02 | GWHPAAYW000931 | G | 537 | 59.56 | 9.08 | 200 | 46 | 16 | 275 |
NcbZIP03 | GWHPAAYW000954 | A | 425 | 45.47 | 9.24 | 155 | 44 | 25 | 201 |
NcbZIP04 | GWHPAAYW000981 | D | 564 | 62.21 | 7.12 | 260 | 47 | 19 | 238 |
NcbZIP05 | GWHPAAYW001299 | C | 415 | 44.86 | 6.11 | 164 | 6 | 5 | 240 |
NcbZIP06 | GWHPAAYW001709 | J | 377 | 41.80 | 5.40 | 151 | 67 | 22 | 137 |
NcbZIP07 | GWHPAAYW002908 | A | 336 | 37.46 | 7.80 | 115 | 19 | 5 | 197 |
NcbZIP08 | GWHPAAYW002911 | A | 336 | 37.46 | 7.80 | 115 | 19 | 5 | 197 |
NcbZIP09 | GWHPAAYW002993 | D | 461 | 50.44 | 7.20 | 242 | 30 | 7 | 182 |
NcbZIP10 | GWHPAAYW003042 | B | 792 | 86.18 | 5.84 | 179 | 94 | 28 | 491 |
NcbZIP11 | GWHPAAYW003339 | E | 266 | 29.16 | 6.15 | 107 | 16 | 10 | 133 |
NcbZIP12 | GWHPAAYW011330 | S | 152 | 17.55 | 5.91 | 98 | 5 | 2 | 47 |
NcbZIP13 | GWHPAAYW014950 | S | 1898 | 214.64 | 9.00 | 712 | 280 | 94 | 812 |
NcbZIP14 | GWHPAAYW015527 | A | 167 | 18.44 | 9.48 | 87 | 22 | 5 | 53 |
NcbZIP15 | GWHPAAYW015722 | I | 428 | 47.31 | 6.74 | 145 | 17 | 11 | 255 |
NcbZIP16 | GWHPAAYW015723 | I | 217 | 23.98 | 9.92 | 72 | 37 | 9 | 99 |
NcbZIP17 | GWHPAAYW019618 | E | 450 | 49.50 | 5.62 | 147 | 27 | 16 | 260 |
NcbZIP18 | GWHPAAYW020485 | S | 160 | 18.11 | 5.48 | 94 | 6 | 4 | 56 |
NcbZIP19 | GWHPAAYW020561 | I | 372 | 40.4 | 5.69 | 154 | 21 | 13 | 184 |
NcbZIP20 | GWHPAAYW021201 | H | 166 | 18.22 | 9.90 | 76 | 7 | 0 | 83 |
NcbZIP21 | GWHPAAYW021532 | C | 385 | 40.82 | 8.58 | 164 | 8 | 5 | 208 |
NcbZIP22 | GWHPAAYW025680 | A | 310 | 34.00 | 5.30 | 110 | 24 | 6 | 170 |
NcbZIP23 | GWHPAAYW025682 | D | 178 | 20.14 | 9.19 | 79 | 21 | 1 | 77 |
NcbZIP24 | GWHPAAYW025732 | A | 488 | 51.90 | 9.37 | 141 | 55 | 17 | 275 |
NcbZIP25 | GWHPAAYW025769 | A | 149 | 16.94 | 9.52 | 78 | 16 | 16 | 39 |
NcbZIP26 | GWHPAAYW026086 | D | 429 | 46.68 | 7.70 | 211 | 30 | 15 | 173 |
NcbZIP27 | GWHPAAYW026335 | S | 195 | 22.17 | 5.82 | 105 | 10 | 2 | 78 |
NcbZIP28 | GWHPAAYW026612 | G | 371 | 39.05 | 8.48 | 118 | 27 | 9 | 217 |
NcbZIP29 | GWHPAAYW026862 | B | 755 | 82.16 | 5.57 | 147 | 90 | 21 | 497 |
NcbZIP30 | GWHPAAYW027461 | G | 298 | 30.89 | 4.79 | 94 | 19 | 6 | 179 |
NcbZIP31 | GWHPAAYW027688 | I | 541 | 59.03 | 6.30 | 183 | 22 | 12 | 324 |
NcbZIP32 | GWHPAAYW028327 | A | 268 | 30.70 | 6.11 | 132 | 30 | 5 | 101 |
NcbZIP33 | GWHPAAYW004093 | A | 462 | 49.89 | 7.11 | 124 | 55 | 14 | 269 |
NcbZIP34 | GWHPAAYW004840 | A | 362 | 40.15 | 6.13 | 143 | 24 | 10 | 185 |
NcbZIP35 | GWHPAAYW004844 | D | 364 | 40.64 | 7.00 | 227 | 21 | 8 | 108 |
NcbZIP36 | GWHPAAYW004881 | G | 283 | 32.04 | 8.68 | 147 | 54 | 24 | 58 |
NcbZIP37 | GWHPAAYW005079 | H | 168 | 18.92 | 6.64 | 78 | 7 | 6 | 77 |
NcbZIP38 | GWHPAAYW005229 | E | 452 | 49.64 | 5.71 | 162 | 33 | 9 | 248 |
NcbZIP39 | GWHPAAYW005452 | S | 169 | 18.77 | 5.53 | 103 | 5 | 2 | 59 |
NcbZIP40 | GWHPAAYW005509 | I | 355 | 38.40 | 5.68 | 145 | 28 | 11 | 171 |
NcbZIP41 | GWHPAAYW005714 | G | 545 | 60.52 | 8.75 | 175 | 66 | 22 | 282 |
NcbZIP42 | GWHPAAYW005783 | C | 410 | 44.35 | 5.67 | 153 | 36 | 17 | 204 |
NcbZIP43 | GWHPAAYW005814 | A | 101 | 12.04 | 8.96 | 81 | 4 | 0 | 16 |
NcbZIP44 | GWHPAAYW005854 | D | 511 | 56.99 | 7.75 | 245 | 23 | 19 | 224 |
NcbZIP45 | GWHPAAYW009588 | I | 334 | 36.76 | 7.01 | 137 | 19 | 13 | 165 |
NcbZIP46 | GWHPAAYW028567 | C | 264 | 28.72 | 6.13 | 119 | 10 | 7 | 128 |
表2
睡莲复制的NcbZIP成员的Ka和Ks分析"
复制基因1 Duplicated gene 1 | 复制基因2 Duplicated gene 2 | 亚家族 Subfamily | Ka Ka | Ks Ks | Ka/Ks Ka/Ks | 纯化选择 Purifying selection | 复制类型 Duplicated type |
---|---|---|---|---|---|---|---|
GWHPAAYW001299 | GWHPAAYW021532 | C | 0.32 | 1.24 | 0.26 | Yes | Segmental duplication 片段复制 |
GWHPAAYW000931 | GWHPAAYW005714 | G | 0.36 | 0.95 | 0.38 | Yes | Segmental duplication 片段复制 |
GWHPAAYW000954 | GWHPAAYW005814 | A | 0.53 | 2.19 | 0.24 | Yes | Segmental duplication 片段复制 |
GWHPAAYW000981 | GWHPAAYW005854 | D | 0.11 | 0.78 | 0.15 | Yes | Segmental duplication 片段复制 |
GWHPAAYW015527 | GWHPAAYW025769 | A | 0.61 | 1.84 | 0.33 | Yes | Segmental duplication 片段复制 |
GWHPAAYW020485 | GWHPAAYW005452 | S | 0.09 | 1.29 | 0.07 | Yes | Segmental duplication 片段复制 |
GWHPAAYW020561 | GWHPAAYW005509 | I | 0.20 | 1.04 | 0.19 | Yes | Segmental duplication 片段复制 |
GWHPAAYW019618 | GWHPAAYW005229 | E | 0.22 | 1.29 | 0.17 | Yes | Segmental duplication 片段复制 |
GWHPAAYW025680 | GWHPAAYW004840 | A | 0.22 | 1.61 | 0.14 | Yes | Segmental duplication 片段复制 |
GWHPAAYW015722 | GWHPAAYW015723 | I | 0.28 | 0.96 | 0.30 | Yes | Tandem duplication 串联复制 |
[1] |
ZHANG L S, CHEN F, ZHANG X T, LI Z, ZHAO Y Y, LOHAUS R, CHANG X J, DONG W, HO S Y W, LIU X, SONG A X, CHEN J H, GUO W L, WANG Z J, ZHUANG Y Y, WANG H F, CHEN X Q, HU J A, LIU Y H, QIN Y et al. The water lily genome and the early evolution of flowering plants. Nature, 2020, 577(7788):79-84.
doi: 10.1038/s41586-019-1852-5 |
[2] |
DRÖGE-LASER W, SNOEK B L, SNEL B, WEISTE C. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology, 2018, 45(Pt A):36-49.
doi: 10.1016/j.pbi.2018.05.001 |
[3] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. bZIP转录因子在植物生长发育及非生物逆境响应的作用. 浙江农业学报, 2019, 31(7):1205-1214. |
LIU H J, XU H, QIU W Y, LI X F, ZHANG H, ZHU Y, LI C S, WANG L C. Roles of bZIP transcription factors in plant growth and development and abiotic stress response. Acta Agriculturae Zhejiangensis, 2019, 31(7):1205-1214. (in Chinese) | |
[4] |
JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, VICENTE- CARBAJOSA J, TIEDEMANN J, KROJ T, PARCY F. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7(3):106-111.
doi: 10.1016/S1360-1385(01)02223-3 |
[5] | 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展. 热带农业科学, 2019, 39(6):39-45. |
WANG J Y, DING F, PAN J C, ZHANG S W, YANG Y H, HUANG X, FAN Z Y, LI L, WANG Y. Research progress of bZIP lineage transcription factors in plant. Chinese Journal of Tropical Agriculture, 2019, 39(6):39-45. (in Chinese) | |
[6] | SORNARAJ P, LUANG S, LOPATO S, HRMOVA M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta, 2016, 1860(1 Pt A):46-56. |
[7] | 崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展. 生物技术通报, 201, 35(2):143-155. |
CUI R X, ZHANG Y W, CHEN X Q, GU C H, ZHANG Q. The Latest Research Progress on the Stress Responses of bZIP Involved in Plants. Biotechnology Bulletin, 2019, 35(2):143-155. (in Chinese) | |
[8] | DAS P, LAKRA N, NUTAN K K, SINGLA-PAREEK S L, PAREEK A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (New York, NY), 2019, 12(1):58. |
[9] |
RONG S Y, WU Z Y, CHENG Z Z, ZHANG S, LIU H, HUANG Q M. Genome-wide identification, evolutionary patterns, and expression analysis of bZIP gene family in olive (Olea europaea L.). Genes (Basel), 2020, 11(5):510.
doi: 10.3390/genes11050510 |
[10] |
WANG Z H, YAN L Y, WAN L Y, HUAI D X, KANG Y P, SHI L, JIANG H F, LEI Y, LIAO B S. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics, 2019, 20(1):51.
doi: 10.1186/s12864-019-5434-6 |
[11] | LIU Y H, CHAI M N, ZHANG M, HE Q, SU Z X, PRIYADARSHANI S V G N, LIU L P, DONG G X, QIN Y A. Genome-wide analysis, characterization, and expression profile of the basic leucine zipper transcription factor family in pineapple. International Journal of Genomics, 2020, 2020:3165958. |
[12] |
AZEEM F, TAHIR H, IJAZ U, SHAHEEN T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiology and Molecular Biology of Plants, 2020, 26(3):433-444.
doi: 10.1007/s12298-020-00771-9 |
[13] |
WANG W W, WANG Y F, ZHANG S M, XIE K L, ZHANG C, XI Y J, SUN F L. Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass. Molecular Biology Reports, 2020, 47(6):4439-4454.
doi: 10.1007/s11033-020-05561-w |
[14] |
FAN K, WANG M, MIAO Y, NI M, BIBI N, YUAN S N, LI F, WANG X D. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9(11):e111837.
doi: 10.1371/journal.pone.0111837 |
[15] |
PERTEA M, KIM D, PERTEA G M, LEEK J T, SALZBERG S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 2016, 11(9):1650-1667.
doi: 10.1038/nprot.2016.095 |
[16] | CHAI W B, SI W N, JI W, QIN Q Q, ZHAO M L, JIANG H Y. Genome-wide investigation and expression profiling of HD-zip transcription factors in foxtail millet (Setaria italica L.). BioMed Research International, 2018, 2018:8457614. |
[17] |
YANG Y, YU T F, MA J, CHEN J, ZHOU Y B, CHEN M, MA Y Z, WEI W L, XU Z S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. International Journal of Molecular Sciences, 2020, 21(2):670.
doi: 10.3390/ijms21020670 |
[18] | 朱芸晔, 薛冰, 王安全, 王文杰, 周昂, 黄胜雄, 刘永胜. 番茄bZIP转录因子家族的生物信息学分析. 应用与环境生物学报, 2014, 20(5):767-774. |
ZHU Y Y, XUE B, WANG A Q, WANG W J, ZHOU A, HUANG S X, LIU Y S. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum. Chinese Journal of Applied & Environmental Biology, 2014, 20(5):767-774. (in Chinese) | |
[19] | 王升级, 孙赫, 党慧. 盐胁迫条件下杨树bZIP转录因子全基因组分析. 山西农业大学学报(自然科学版), 2018, 38(8):1-7, 14. |
WANG S J, SUN H, DANG H. Genome-wide analysis of the bZIP transcription factors in Populus in response to salt stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(8):1-7, 14. (in Chinese) | |
[20] | 高斌, 陈娟娟, 崔顺立, 侯名语, 穆国俊, 陈焕英, 杨鑫雷, 刘立峰. 花生bZIP基因家族全基因组鉴定及抗旱表达分析. 植物遗传资源学报, 2020, 21(1):174-191. |
GAO B, CHEN J J, CUI S L, HOU M Y, MU G J, CHEN H Y, YANG X L, LIU L F. Genome-wide identification and expression analysis of bZIP gene family under drought stress in peanut. Journal of Plant Genetic Resources, 2020, 21(1):174-191. (in Chinese) | |
[21] |
BAILLO E H, KIMOTHO R N, ZHANG Z B, XU P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 2019, 10:771.
doi: 10.3390/genes10100771 |
[22] |
E Z G, ZHANG Y P, ZHOU J H, WANG L. Mini review roles of the bZIP gene family in rice. Genetics and Molecular Research, 2014, 13(2):3025-3036.
doi: 10.4238/2014.April.16.11 pmid: 24782137 |
[23] |
PAN F, WU M, HU W F, LIU R, YAN H W, XIANG Y. Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo (Phyllostachys edulis). International Journal of Molecular Sciences, 2019, 20(9):2203.
doi: 10.3390/ijms20092203 |
[24] |
ZHANG M, LIU Y H, SHI H, GUO M L, CHAI M N, HE Q, YAN M K, CAO D, ZHAO L H, CAI H Y, QIN Y A. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1):159.
doi: 10.1186/s12864-018-4511-6 |
[25] |
YU J, HU S N, WANG J, KA-SHU G, LI S G, LIU B, DENG Y J, DAI L, ZHOU Y, ZHANG X Q, CAO M L, LIU J, SUN J D, TANG J B, CHEN Y J, HUANG X B, LIN W, YE C, TONG W, CONG L J, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565):79-92.
doi: 10.1126/science.1068037 |
[26] |
SCHMUTZ J, CANNON S B, SCHLUETER J, MA J X, MITROS T, NELSON W, HYTEN D L, SONG Q J, THELEN J J, CHENG J L, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278):178-183.
doi: 10.1038/nature08670 |
[27] |
WEI K F, CHEN J, WANG Y M, CHEN Y H, CHEN S X, LIN Y N, PAN S, ZHONG X J, XIE D X. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 2012, 19(6):463-476.
doi: 10.1093/dnares/dss026 |
[28] |
LIU M Y, WEN Y D, SUN W J, MA Z T, HUANG L, WU Q, TANG Z Z, BU T L, LI C L, CHEN H. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics, 2019, 20(1):483.
doi: 10.1186/s12864-019-5882-z |
[29] |
LI D Y, FU F Y, ZHANG H J, SONG F M. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics, 2015, 16:771.
doi: 10.1186/s12864-015-1990-6 |
[30] |
ZHAO P, YE M H, WANG R Q, WANG D D, CHEN Q. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance. International Journal of Biological Macromolecules, 2020, 161:155-167.
doi: 10.1016/j.ijbiomac.2020.06.032 |
[31] |
FAN K, CHEN Y R, MAO Z J, FANG Y, LI Z W, LIN W W, ZHANG Y Q, LIU J P, HUANG J W, LIN W X. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genomics, 2020, 21(1):465.
doi: 10.1186/s12864-020-06877-4 |
[32] |
FAN K, MAO Z J, ZHENG J X, CHEN Y R, LI Z W, LIN W W, ZHANG Y Q, HUANG J W, LIN W X. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Frontiers in Plant Science, 2020, 11:545042.
doi: 10.3389/fpls.2020.545042 |
[33] |
LIANG C Z, MENG Z H, MENG Z G, MALIK W, YAN R, LWIN K M, LIN F Z, WANG Y A, SUN G Q, ZHOU T, ZHU T, LI J Y, JIN S X, GUO S D, ZHANG R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports, 2016, 6:35040.
doi: 10.1038/srep35040 |
[34] |
LIM C W, BAEK W, JUNG J, KIM J H, LEE S C. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 2015, 16(7):15251-15270.
doi: 10.3390/ijms160715251 |
[35] |
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32(7):959-970.
doi: 10.1007/s00299-013-1418-1 |
[36] | 郭贵华, 刘海艳, 李刚华, 刘明, 李岩, 王绍华, 刘正辉, 唐设, 丁艳锋. ABA缓解水稻孕穗期干旱胁迫生理特性的分析. 中国农业科学, 2014, 47(22):4380-4391. |
GUO G H, LIU H Y, LI G H, LIU M, LI Y, WANG S H, LIU Z H, TANG S, DING Y F. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress. Scientia Agricultura Sinica, 2014, 47(22):4380-4391. (in Chinese) | |
[37] | 山雨思, 代欢欢, 何潇, 辛正琦, 吴能表. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响. 植物生理学报, 2019, 55(9):1335-1346. |
SHAN Y S, DAI H H, HE X, XIN Z Q, WU N B. Effects of exogenous methyl jasmonate and salicylic acid on physiological characteristics and secondary metabolism of Atropa belladonna under NaCl stress. Plant Physiology Communications, 2019, 55(9):1335-1346. (in Chinese) | |
[38] |
YU X X, ZHANG W J, ZHANG Y, ZHANG X J, LANG D Y, ZHANG X H. The roles of methyl jasmonate to stress in plants. Functional Plant Biology, 2019, 46(3):197-212.
doi: 10.1071/FP18106 |
[39] |
HO T T, MURTHY H N, PARK S Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21(3):716.
doi: 10.3390/ijms21030716 |
[40] |
SCHLÖGL P S, NOGUEIRA F T S, DRUMMOND R, FELIX J M, DE ROSA V E, VICENTINI R, LEITE A, ULIAN E C, MENOSSI M. Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Reports, 2008, 27(2):335-345.
doi: 10.1007/s00299-007-0468-7 |
[41] |
YANG Z M, SUN J, CHEN Y, ZHU P P, ZHANG L, WU S Y, MA D F, CAO Q H, LI Z Y, XU T. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genetics, 2019, 20(1):41.
doi: 10.1186/s12863-019-0743-y |
[42] |
MURMU J, BUSH M J, DELONG C, LI S T, XU M L, KHAN M, MALCOLMSON C, FOBERT P R, ZACHGO S, HEPWORTH S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3):1492-1504.
doi: 10.1104/pp.110.159111 |
[43] |
XU D B, CHEN M, MA Y N, XU Z S, LI L C, CHEN Y F, MA Y Z. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS ONE, 2015, 10(1):e0116385.
doi: 10.1371/journal.pone.0116385 |
[44] |
LIU D F, SHI S P, HAO Z J, XIONG W T, LUO M Z. A homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice. International Journal of Molecular Sciences, 2019, 20(9):2360.
doi: 10.3390/ijms20092360 |
[1] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[2] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[3] | 渠成,王然,李峰奇,罗晨. 烟粉虱味觉受体基因BtabGR1和BtabGR2的克隆与表达模式分析[J]. 中国农业科学, 2022, 55(13): 2552-2561. |
[4] | 张莉,张楠,江虎强,吴帆,李红亮. 中华蜜蜂NPC2基因家族克隆及表达模式分析[J]. 中国农业科学, 2022, 55(12): 2461-2471. |
[5] | 郑海霞,高玉林,张方梅,杨超霞,蒋健,朱勋,张云慧,李祥瑞. 马铃薯甲虫热激蛋白基因Ld-hsp70的克隆及温度胁迫下的表达特性[J]. 中国农业科学, 2021, 54(6): 1163-1175. |
[6] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[7] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
[8] | 刘爱丽,魏梦园,黎冬华,周瑢,张秀荣,游均. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析[J]. 中国农业科学, 2020, 53(17): 3432-3442. |
[9] | 刘玉飞,金基强,姚明哲,陈亮. 茶树咖啡碱合成酶基因稀有等位变异TCS1g的筛选、克隆及功能[J]. 中国农业科学, 2019, 52(10): 1772-1783. |
[10] | 许冰霞,尹美强,温银元,裴帅帅,柯贞进,张彬,原向阳. 谷子萌发期响应干旱胁迫的基因表达谱分析[J]. 中国农业科学, 2018, 51(8): 1431-1447. |
[11] | 范鑫,赵雷霖,翟红红,王远,孟志刚,梁成真,张锐,郭三堆,孙国清. AtNEK6在棉花旱盐胁迫响应中的功能分析[J]. 中国农业科学, 2018, 51(22): 4230-4240. |
[12] | 何红红,马宗桓,张元霞,张娟,卢世雄,张志强,赵鑫,吴玉霞,毛娟. 葡萄LBD基因家族的鉴定与表达分析[J]. 中国农业科学, 2018, 51(21): 4102-4118. |
[13] | 张薇薇,董照明,张艳,张晓璐,张守亚,赵萍. 家蚕表皮蛋白BmCPAP3-G的表达特征及其与几丁质的结合特性[J]. 中国农业科学, 2017, 50(9): 1723-1733. |
[14] | 张春玲,王尼慧,王宁乐,包满珠,何燕红. 万寿菊番茄红素β-环化酶基因及其启动子克隆和功能分析[J]. 中国农业科学, 2017, 50(24): 4779-4789. |
[15] | 束婧婷,姬改革,单艳菊,章明,肖芹,屠云洁,盛中伟,张笛,邹剑敏. 基于表达谱芯片挖掘鸡骨骼肌不同类型肌纤维的差异表达基因[J]. 中国农业科学, 2017, 50(14): 2826-2836. |
|