[1]Aitken A. 14-3-3 proteins: A historic overview. Seminars in Cancer Biology, 2006, 16: 162-172.[2]Alexander R D, Morris P C. A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics, 2006, 6: 1886-1896.[3]Chevalier D, Morris E R, Walker J C. 14-3-3 and FHA domains mediate phosphoprotein interactions. Annual Review of Plant Biology, 2009, 60: 67-91.[4]Denison F C, Paul A L, Zupanska A K, Ferl R J. 14-3-3 proteins in plant physiology. Seminars in Cell and Developmental Biology, 2011, 22(7): 720-727.[5]Wilker E W, van Vugt M A T M, Artim S A, Huang P H, Petersen C P, Christian Reinhardt H, Feng Y, Sharp P A, Sonenberg N, White F M, Yaffe M B. 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature, 2007, 446: 329-332.[6]Sehnke P C, Chung H J, Wu K, Ferl R J. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 765-770.[7]Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiology, 2008, 146: 1878-1891.[8]Zuk M, Weber R, Szopa J. 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants. Journal of Agricultural and Food Chemistry, 2005, 53: 3454-3460.[9]Pozuelo Rubio M, Geraghty K M, Wong B H C, Wood N T, Campbell D G, Morrice N, Mackintosh C. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochemical Journal, 2004, 379: 395-408.[10]Schoonheim P J, Veiga H, da Costa Pereira D, Friso G, van Wijk K J, de Boer A H. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiology, 2007, 143(2): 670-683.[11]Lu G, DeLisle A J, de Vetten N C, Ferl R J. Brain proteins in plants: An Arabidopsis homolog to neurotransmitter pathway activators in part of a DNA binding complex. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 11490-11494.[12]Ferl R J, Lu G, Bowen B W. Evolutionary implications of the family of 14-3-3 brain protein homologs in Arabidopsis thaliana. Genetica, 1994, 92(2): 129-138.[13]Wu K, Rooney M F, Ferl R J. The Arabidopsis 14-3-3 multigene family. Plant Physiology, 1997, 114: 1421-1431.[14]Rosenquist M, Alsterfjord M, Larsson C, Sommarin M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiology, 2001, 127(1): 142-149.[15]Sehnke P C, Laughner B, Cardasis H, Powell D, Ferl R J. Exposed loop domains of complexed 14-3-3 proteins contribute to structural diversity and functional specificity. Plant Physiology, 2006, 140(2): 647-660.[16]Cooper B, Clarke J D, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff S A, Glazebrook J. A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4945-4950.[17]Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A. Collection, mapping, and annotation of over 28 000 cDNA clones from japonica rice. Science, 2003, 301(5631): 376-379.[18]Li X, Dhaubhadel S. Soybean 14-3-3 gene family: Identification and molecular characterization. Planta, 2011, 233: 569-582.[19]Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A, Akiyama K, Kurotani A, Yoshida T, Mochida K, Kasuga M, Todaka D, Maruyama K, Nakashima K, Enju A, Mizukado S, Ahmed S, Yoshiwara K, Harada K, Tsubokura Y, Hayashi M, Sato S, Anai T, Ishimoto M, Funatsuki H, Teraishi M, Osaki M, Shinano T, Akashi R, Sakaki Y, Yamaguchi-Shinozaki K, Shinozaki K. Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Research, 2008, 15(6): 333-346.[20]Brandt J, Thordal-Christensen H, Vad K, Gregersen P L, Collinge D B. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. The Plant Journal, 1992, 2(5): 815-820.[21]Schoonheim P J, Sinnige M P, Casaretto J A, Veiga H, Bunney T D, Quatrano R S, de Boer A H. 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. The Plant Journal, 2007, 49(2): 289-301.[22]de Vetten N C, Lu G, Ferl R J. A maize protein associated with the G-box binding complex has homology to brain regulatory proteins. The Plant Cell, 1992, 4: 1295-1307.[23]Alexandrov N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B, Feldmann K A. Insights into corn genes derived from large-scale cDNA sequencing. Plant Molecular Biology, 2009, 69(1/2): 179-194.[24]Ikeda Y, Koizumi N, Kusano T, Sano H. Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. The Journal of Biological Chemistry, 2000, 275(41): 31695-31700.[25]Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 2005, 58(3): 367-384.[26]Wang C, Ma Q H, Lin Z B, He P, Liu J Y. Cloning and characterization of a cDNA encoding 14-3-3 protein with leaf and stem-specific expression from wheat. Mitochondrial DNA, 2008, 19(2): 130-136.[27]Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 2006, 17: 353-358.[28]Waugh D S. Making the most of affinity tags. Trends in Biotechnology, 2005, 23(6): 316-320.[29]Sambrook J, Russell D W. Molecular Cloning: A Laboratory Mannual: Third Edition. New York: Cold Spring Harbor Laboratory Press, 2001.[30]宋健民, 戴 双, 李豪圣, 刘爱峰, 程敦公, 楚秀生, Tetlow I J, Emes M J. 小麦胚乳14-3-3蛋白的表达及其与淀粉体淀粉合成酶的互作. 作物学报, 2009, 35(8): 1445-1450. Song J M, Dai S, Li H S, Liu A F, Cheng D G, Chu X S, Tetlow I J, Emes M J. Expression of a wheat endosperm 14-3-3 protein and its interactions with starch biosynthetic enzymes in amyloplasts. Acta Agronomica Sinica, 2009, 35(8): 1445-1450. (in Chinese)[31]Lambeck I, Chi J C, Krizowski S, Mueller S, Mehlmer N, Teige M, Fischer K, Schwarz G. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry, 2010, 49(37): 8177-8186. |