Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield
Ying Zhang, Rui Wang, Tianshun Luo, Jingyan Fu, Meng Yin, Maolin Wang, Yun Zhao
2025, 24 (5): 1704-1717.   DOI: 10.1016/j.jia.2024.05.016
Abstract35)      PDF in ScienceDirect      
Brassica napus, one of the most important oil crops cultivated globally, is severely impacted by prolonged soil contamination with cadmium (Cd), resulting in decreased yields and poor seed quality.  This crop exhibits a high adsorption capacity for Cd, making creating seed resources with low Cd accumulation an essential strategy to alleviate this challenge.  To address this issue, we genetically edited BnaNRAMP1 in Bnapus by targeting three different exon regions, resulting in new germplasm resources with significant differences in Cd accumulation capacity and unaffected yield.  Among these, the mutant K140-22, specifically targeting the 7th exon, is distinguished by its substantially reduced Cd accumulation.  Further, enzyme assays of the antioxidant defense system in both roots and shoots of K140-22 revealed its enhanced antioxidant activity, which contributes to elucidating the molecular mechanisms of plant tolerance to heavy metal stress.  Remarkably, this mutant also maintained equivalent agronomic traits and seed quality, which highlights its potential as a germplasm resource for rapeseed breeding for low Cd accumulation and elevating rapeseed economic value in Cd-contaminated soil.


Reference | Related Articles | Metrics
Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure
Peihua Du, Yang Cao, Huaite Liu, Jiahao Ji, Wei Sun, Xueying Zhang, Jizhong Xu, Bowen Liang
2024, 23 (9): 3025-3044.   DOI: 10.1016/j.jia.2024.07.011
Abstract87)      PDF in ScienceDirect      
Apple replant disease (ARD) is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species (ROS) levels and limited nutrient utilization in plants.  However, existing countermeasures cannot effectively address this challenge.  Here, we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.  Exogenous application of 100 μmol L–1 dopamine significantly promoted the growth of apple seedlings in the replanted soil, with a relative growth rate increase of 17.44%.  Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.  First, dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen (N) transport and metabolism.  Among those genes, MdNLP5, MdNRT1.1, MdNLP2, MdNRT2.5, MdNLP3, MdNRT2.4, MdNADH-GAGOT, and MdFd-GAGOT were strongly regulated by dopamine.  These regulatory effects promoted the uptake and utilization of soil N by the plants.  Second, dopamine improved the physical and chemical properties, enhanced microbial community diversity, and promoted mutual cooperation between microbial communities in the soil.  Furthermore, dopamine altered the microbial structure of rhizosphere soil (upregulating Clostridiales, Gaiellales, Sordariales and Mortierellales; downregulating Micrococcales, Longimicrobiales, Hypocreales and Cystobasidiales).  Notably, dopamine significantly upregulated the abundances of Gaiella and Mortierella, both of which were positively correlated with soil urease activity, soil available N content, plant growth and N uptake.  Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella (by 11.71-fold) in replant soil.  Our results provide insights into the mechanisms by which dopamine promotes ARD resistance, and can promote the sustainable development of the apple industry.


Reference | Related Articles | Metrics
Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat
Junming Liu, Zhuanyun Si, Shuang Li, Lifeng Wu, Yingying Zhang, Xiaolei Wu, Hui Cao, Yang Gao, Aiwang Duan
2024, 23 (12): 4018-4031.   DOI: 10.1016/j.jia.2023.12.002
Abstract224)      PDF in ScienceDirect      
A high-efficiency mode of high-low seedbed cultivation (HLSC) has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province, China.  However, limited information is available on the optimized water and nitrogen management for yield formation, especially the grain-filling process, under HLSC mode.  A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters, grain weight percentage of spike weight (GPS), spike moisture content (SMC), and winter wheat yield to water and nitrogen rates.  The four nitrogen rates were N1 (360 kg ha–1 pure N), N2 (300 kg ha–1 pure N), N3 (240 kg ha–1 pure N), and N4 (180 kg ha–1 pure N), respectively, and the three irrigation quotas were W1 (120 mm), W2 (90 mm), and W3 (60 mm), respectively.  Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight (0.989<R2<0.999, where R2 is the determination coefficient).  The occurrence time of maximum filling rate (Tmax) and active grain-filling period (AGP) increased with the increase in the water or nitrogen rate, whereas the average grain-filling rate (Gmean) had a decreasing trend.  The final 1,000-grain weight (FTGW) increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.  The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.  Nitrogen, irrigation, and year significantly affected the Tmax, AGP, Gmean, and FTGW.  Particularly, the AGP and FTGW were insignificantly different between high seedbed (HLSC-H) and low seedbed (HLSC-L) across the water and nitrogen levels.  Moreover, the moderate water and nitrogen supply was more beneficial for grain yield, as well as for spike number and grain number per hectare.  The principal component analysis indicated that combining 240–300 kg N ha–1 and 90–120 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.  


Reference | Related Articles | Metrics
Genetic and biological properties of H10Nx influenza viruses in China
Yina Xu, Hailing Li, Haoyu Leng, Chaofan Su, Siqi Tang, Yongtao Wang, Shiwei Zhang, Yali Feng, Yanan Wu, Daxin Wang, Ying Zhang
2024, 23 (11): 3860-3869.   DOI: 10.1016/j.jia.2023.10.028
Abstract107)      PDF in ScienceDirect      
H10 subtype avian influenza viruses (AIV) have been circulating in China for 40 years.  H10 AIVs in China have expanded their host range from wild birds to domestic poultry and mammals, even human.  Most of the H10 subtype AIVs reported in China were isolate from the southeast part.  We isolated an H10N3 AIV, A/Chicken/Liaoning/SY1080/2021 (SY1080), from live poultry market (LPM) in Liaoning Province of the Northeast China.  SY1080 replicated efficiently in mice lungs and nasal turbinates without prior adaptation.  We systematically compared SY1080 with other H10 subtype isolates in China.  Phylogenetic analysis showed that SY1080 and most of the H10 strains belonged to the Eurasian lineage.  H10 AIVs in China have formed 63 genotypes.  SY1080 as well as the H10N3 strains from human infections belonged to G60 genotype.  H10Nx AIV acquired multiple mammalian adaptive and virulence related mutations during circulation and the recent reassortants derived internal genes from chicken H9N2 AIVs.  The H10Nx subtypes AIVs posed potential threat to public health.  These results suggested we should strengthen the surveillance and evaluation of H10 subtype strains.


Reference | Related Articles | Metrics
Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind
Yanan Xu, Yue Wu, Yan Han, Jiqing Song, Wenying Zhang, Wei Han, Binhui Liu, Wenbo Bai
2024, 23 (1): 108-121.   DOI: 10.1016/j.jia.2023.04.019
Abstract245)      PDF in ScienceDirect      

Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide, especially winter wheat in the Huang-Huai-Hai Plain of China, and both the occurrence and severity of such events are likely to increase with global climate change.  To investigate the recovery of physiological functions and yield formation using a new non-commercial chemical regulator (NCR) following dry-hot wind stress, we conducted a three-year field experiment (2018–2021) with sprayed treatments of tap water (control), monopotassium phosphate (CKP), NCR at both the jointing and flowering stages (CFS), and NCR only at the jointing stage (FSJ) or flowering stage (FSF).  The leaf physiology, biomass accumulation and translocation, grain-filling process, and yield components in winter wheat were assessed.  Among the single spraying treatments, the FSJ treatment was beneficial for the accumulation of dry matter before anthesis, as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.  The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value, and a low rate of excised leaf water loss in flag leaves, promoting dry matter accumulation and the contribution to grain after anthesis, prolonging the duration of grain filling, and causing the period until the maximum grain-filling rate reached earlier.  The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.  The exogenous NCR treatments significantly increased grain yields by 12.45–18.20% in 2018–2019, 8.89–13.82% in 2019–2020, and 8.10–9.00% in 2020–2021.  The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020–2021.  The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress, followed by the FSF and FSJ treatments, and the CKP treatment only had a minimal effect.  In summary, the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.  This treatment can effectively regulate green retention and the water status of leaves, promote dry matter accumulation and efficient translocation, improve the grain-filling process, and ultimately reduce yield losses.

Reference | Related Articles | Metrics
Optimized application strategy of controlled-release nitrogen improves grain yield, nitrogen use efficiency and lodging resistance of rice
Hao Wu, Wenjiang Jing, Yajun Zhang, Ying Zhang, Weilu Wang, Kuanyu Zhu, Weiyang Zhang, Junfei Gu, Lijun Liu, Jianhua Zhang, Hao Zhang
DOI: 10.1016/j.jia.2024.10.007 Online: 28 October 2024
Abstract22)      PDF in ScienceDirect      

Lodging is a primary factor limiting rice grain yield. How to achieve the synergistic improvement of high yield and nitrogen use efficiency without lodging has always been the focus worldwide.  In this study, Yongyou 2640 (indica-japonica hybrid rice) and Jinxiangyu 1 (inbred japonica rice) were used as materials for field experiments across two years. Six different nitrogen managements were set up, including no nitrogen (T1), conventional urea (T2), controlled-release nitrogen (T3), reduction of controlled-release nitrogen (T4), controlled-release nitrogen combined with one-time basal conventional urea (T5), controlled-release nitrogen combined with split conventional urea (T6).  The results showed that compared with T2, the combined application strategy of controlled-release nitrogen (T5 and T6) could improve nitrogen use efficiency and grain yield by 4.89–5.69% and 3.41–4.65%, respectively.  The carbohydrate contents of the second basal internode, the internode breaking strength, the thickness of the epidermal silicon layer, the number of large and small vascular bundles, and the thickness of parenchymatous tissue and mechanical tissue were increased, whereas the internode length, bending moment and lodging index were reduced under the combined application strategy of controlled-release nitrogen.  These results indicated that the combined application strategy of controlled-release nitrogen could achieve the goal of high yield and nitrogen use efficiency with synchronously increased stem strength due to the improvement in the morphological, mechanical, physicochemical and anatomical properties of second basal stem.

Reference | Related Articles | Metrics
Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures
Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yuling Fang, Keqin Chen, Kekun Zhang
DOI: 10.1016/j.jia.2024.11.006 Online: 05 November 2024
Abstract17)      PDF in ScienceDirect      

The evaluation of plant stress tolerance and the screening of key regulatory genes under the combined stresses of high temperature and drought are important for the study of plant stress tolerance mechanisms. In this study, the drought tolerance of five grape varieties was evaluated under high-temperature conditions to screen key genes for further exploration of resistance mechanisms. By comparing and analysing the morphological characteristics and physiological indicators associated with the response of grapevines to drought stress and integrating them with the membership function to assess the strength of their drought tolerance, the order of drought tolerance was found to be as follows: 420A>110R>CS>fercal>188-08. To further analyse the mechanism of differences in drought tolerance, transcriptomic sequencing was performed on the drought-tolerant cultivar 420A, the drought-sensitive cultivar 188-08 and the control cultivar CS. The functional analysis of differential metabolic pathways indicated that the differentially expressed genes were enriched mainly in biological that 420A had higher antioxidant activity. Moreover, the transcription factors which differentially expressed were also analysed in the five grape varieties, and several genes, such as VvAGL15, VvLBD41, and VvMYB86, appeared to be closely related to drought tolerance, suggesting their potential involvement in the regulation of grapevine drought tolerance and their value in drought tolerance research.

Reference | Related Articles | Metrics
OIVC medium enhances developmental competence in porcine preimplantation embryos
Yongjiang Yang, Ying Zhang, Qiang Liu, Shuangjie Tian, Wanyun Feng, Fangwen Deng, Guosong Qin, Yanfang Wang, Jianguo Zhao
DOI: 10.1016/j.jia.2025.03.005 Online: 18 March 2025
Abstract15)      PDF in ScienceDirect      

The developmental capacity of in vitro embryos is critical for the success of embryonic biotechnology. However, in vitro embryos often exhibit suboptimal quality, with fewer inner cell mass (ICM) cells and reduced total blastocyst cell counts compared to in vivo embryos. To address this, we optimized the conventional PZM-3 culture medium by supplementing 50% Advanced DMEM/F12 and 5% FBS on the fifth day after embryo activation (Day 5 medium) and resulted in a 2.5-fold increase in the total cell numbers of parthenogenetic activation (PA) derived blastocysts. Further enhancement was achieved by incorporating Activin A in Day 5 medium, creating the OIVC (Optimized In Vitro Culture) medium, which significantly increased both the total cell numbers and the ICM cell counts by 4.5-fold in the blastocyst stage. The OIVC medium also improved the quality of pig somatic cloned and in vitro fertilized (IVF) embryos. RNA sequencing analysis revealed that in the OIVC-treated embryos, most of the differentially expressed genes were downregulated compared to the control group, with the main enriched signaling pathways including Activin A/TGF-β. Notably, among these downregulated genes, PAX6 may be as a potential key gene influencing the number of ICM cells. This study presents a novel culture system that markedly enhances pig in vitro embryo quality, providing an efficient strategy for generating cloned pigs based on somatic cell nuclear transfer (SCNT) technology.

Reference | Related Articles | Metrics
Cell-adapted African swine fever virus Pig/HLJ/18 is highly attenuated but fails to induce immune protection against a challenge with its parental virus
Wan Wang, Li Yin, Zhenjiang Zhang, Fan Liu, Xin Zhang, Zhigang Wang, Rui Zhao, Menglong Cao, Ying Zhang, Leilei Ding, Renqiang Liu, Encheng Sun, Xiangpeng Sheng, Weldu Tesfagaber, Fang Li, Xijun He, Zhigao Bu, Yuanmao Zhu, Dongming Zhao
DOI: 10.1016/j.jia.2025.03.017 Online: 22 March 2025
Abstract7)      PDF in ScienceDirect      

African swine fever (ASF) is an acute, hemorrhagic disease caused by the African swine fever virus (ASFV), with a mortality up to 100%. The disease poses a seriously threat to the global swine industry, yet no commercial vaccines or antiviral drugs are available other than in VietnamASFV attenuation through serial passages is a key approach for vaccine development. In this study, a cell-adapted virus, named HLJ18/BK33, was successfully generated by serially passaging the ASFV Pig/HLJ/18 in wild boar kidney cells (BK2258). This adapted virus exhibited clear cytopathic effects (CPE) and replicated stably and efficiently in BK2258 cells and porcine alveolar macrophages. Whole-genome sequence analysis revealed that, compared with the Pig/HLJ/18 virus, HLJ18/BK33 had a large deletion of 6162 bp from sites 181,027 to 187,188, and four single nucleotide deletions that led to frameshift mutations, resulting in the truncated expression of three open reading frames (ORFs) (ASFV_G_ACD_00120, ASFV_G_ACD_00350, and A179L), and the fusion expression of two ORFs (MGF_110-14L and MGF_110-11L). Additionally, four genes exhibited missense mutations, leading to single amino acid changes. Five pigs intramuscularly inoculated with 106 TCID50 of HLJ18/BK33 remained healthy with normal body temperatures and no clinical signs, indicating a high attenuation of virulence for HLJ18/BK33 in pigs. Upon challenge with the parental Pig/HLJ/18 virus, four of the five inoculated pigs developed persistent high fever and ASF-related clinical signs and died within 13 days of the challenge; the remaining pig developed transient fever but survived until the end of the observation period. These results indicate that the HLJ18/BK33 virus is highly attenuated but cannot induce protection against the parental virulent virus. Even though the HLJ18/BK33 virus is not a good vaccine candidate, its stable replication and distinct CPE in BK2258 cells as well as its low biosafety risk make it a valuable resource for studies on virus-host interactions, antiviral drug screening, diagnostic methods, and biological characteristics. 

Reference | Related Articles | Metrics