Alberio R, Croxall N, Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 19, 1627-36.
Bedzhov I, Leung C Y, Bialecka M, Zernicka-Goetz M. 2014. In vitro culture of mouse blastocysts beyond the implantation stages. Nature Protocols, 9, 2732-9.
Blakeley P, Fogarty N M, del Valle I, Wamaitha S E, Hu T X, Elder K, Snell P, Christie L, Robson P, Niakan K K. 2015. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development, 142, 3151-65.
Brandao D O, Maddox-Hyttel P, Lovendahl P, Rumpf R, Stringfellow D, Callesen H. 2004. Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biology of Reproduction, 71, 2048-55.
Chambers S M, Fasano C A, Papapetrou E P, Tomishima M, Sadelain M, Studer L. 2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275-80.
Chen P R, Spate L D, Leffeler E C, Benne J A, Cecil R F, Hord T K, Prather R S. 2020. Removal of hypotaurine from porcine embryo culture medium does not impair development of in vitro-fertilized or somatic cell nuclear transfer-derived embryos at low oxygen tension. Molecular Reproduction and Development, 87, 773-782.
Chen P R, Uh K, Redel B K, Reese E D, Prather R S, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. Frontiers in Animal Science, 2022.
Cole J D, McHaney K M, Rabiee B, Gao J, Rodriguez C, Miller D A, Liu M, Grannonico M, Norat P, Zhang H F, Djalilian A R, Liu X. 2022. Long-term retinal protection by MEK inhibition in Pax6 haploinsufficiency mice. Experimental Eye Research, 218, 109012.
Cuello C, Gomis J, Almiñana C, Maside C, Sanchez-Osorio J, Gil M, Sánchez A, Parrilla I, Vazquez J, Roca J. 2013. Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 136, 296-302.
Fang X, Tanga B M, Bang S, Seong G, Saadeldin I M, Lee S, Cho J. 2022. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos. Molecular Reproduction and Development, 89, 54-65.
Fu B, Liu D, Ma H, Li Z Q, Wang L, Bai J. 2011. Effect of Pyruvate and Lactic Acid on the Development of Porcine Embryos. Advanced Materials Research, 343-344, 611 - 617.
Hou N, Du X, Wu S. 2022. Advances in pig models of human diseases. Animal Models and Experimental Medicine, 5, 141-152.
Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar P J, Aruga J, Matsuo I, Kondoh H. 2012. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development, 139, 3926-37.
Jin J X, Lee S, Setyawan E M N, Taweechaipaisankul A, Kim G A, Han H J, Ahn C, Lee B C. 2018. A potential role of knockout serum replacement as a porcine follicular fluid substitute for in vitro maturation: Lipid metabolism approach. Journal of Cellular Physiology, 233, 6984-6995.
Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. 2001. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes and Development, 15, 1272-86.
Kikuchi K, Onishi A, Kashiwazaki N, Iwamoto M, Noguchi J, Kaneko H, Akita T, Nagai T. 2002. Successful Piglet Production after Transfer of Blastocysts Produced by a Modified In Vitro System. Biology of Reproduction, 66, 1033-1041.
Kwon J, Li Y H, Jo Y J, Oh Y, Namgoong S, Kim N H. 2019. Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ, 6, e5840.
Lee M, Oh J-N, Kim S-H, Choi K-H, Lee D-K, Choe G C, Jeong J, Lee C-K. 2020. Identification of the Role of SOX2 During Early Embryogenesis in Pigs. International Journal of Biology sciences, 3, 179.
Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney A J, Liu Z. 2015. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Developmental Dynamics, 244, 619-27.
Liu X, Zhou Y, Qin C, Zhu X. 2022. TNFRSF9 Suppressed the Progression of Breast Cancer via the p38MAPK/PAX6 Signaling Pathway. Journal of Oncology, 2022, 8549781.
Lo J H, Edwards M, Langerman J, Sridharan R, Plath K, Smale S T. 2022. Oct4:Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells. Genes and Development, 36, 1079-1095.
Lunney J K, Van Goor A, Walker K E, Hailstock T, Franklin J, Dai C. 2021. Importance of the pig as a human biomedical model. Science Translational Medicine, 13, eabd5758.
Machado G M, Ferreira A R, Pivato I, Fidelis A, Spricigo J F, Paulini F, Lucci C M, Franco M M, Dode M A. 2013. Post-hatching development of in vitro bovine embryos from day 7 to 14 in vivo versus in vitro. Molecular Reproduction and Development, 80, 936-47.
Malin K, Witkowska-Pilaszewicz O, Papis K. 2022. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology, 189, 246-254.
Mito T, Yoshioka K, Yamashita S, Suzuki C, Noguchi M, Hoshi H. 2012. Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium. Reproduction, Fertility and Development, 24, 443-450.
Mun S-E, Sim B-W, Yoon S-B, Jeong P-S, Yang H-J, Choi S-A, Park Y-H, Kim Y-H, Kang P, Jeong K-J. 2017. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs. PloS one, 12, e0175427.
Nursalim Y, Groom K, Blenkiron C, Chamley L. 2021. A simple method to isolate term trophoblasts and maintain them in extended culture. Placenta, 108, 1-10.
Oestrup O, Hall V, Petkov S, Wolf X, Hyldig S, Hyttel P. 2009. From Zygote to Implantation: Morphological and Molecular Dynamics during Embryo Development in the Pig. Reproduction in Domestic Animals, 44, 39-49.
Okada K, Krylov V, Kren R, Fulka J, Jr. 2006. Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. Journal of Reproduction and Development, 52, 91-8.
Ramos-Ibeas P, Sang F, Zhu Q, Tang W W C, Withey S, Klisch D, Wood L, Loose M, Surani M A, Alberio R. 2019. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 10, 500.
Robinson M, Gilbert S F, Waters J A, Lujano-Olazaba O, Lara J, Alexander L J, Green S E, Burkeen G A, Patrus O, Sarwar Z, Holmberg R, Wang C, House C D. 2021. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel), 13.
Santos R R, Schoevers E J, Roelen B A J. 2014. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reproductive Biology and Endocrinology, 12, 117.
Sheng J, Wang L, Tang P M, Wang H L, Li J C, Xu B H, Xue V W, Tan R Z, Jin N, Chan T F, Huang X R, Ma R C, Lan H Y. 2021. Smad3 deficiency promotes beta cell proliferation and function in db/db mice via restoring Pax6 expression. Theranostics, 11, 2845-2859.
Srirattana K, Kaneda M, Parnpai R. 2022. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. International Journal of Molecular Sciences, 23.
Sun J, Yoon J, Lee M, Hwang Y-s, Daar I O. 2020. Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway. Scientific Reports, 10.
Swain N, Thakur M, Pathak J, Swain B. 2020. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. Journal of Oral and Maxillofacial Pathology, 24, 368-373.
Trigal B, Gomez E, Diez C, Caamano J N, Martin D, Carrocera S, Munoz M. 2011. In vitro development of bovine embryos cultured with activin A. Theriogenology, 75, 584-8.
Vackova I, Ungrova A, Lopes F. 2007. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 53, 1137-49.
Vajta G, Alexopoulos N I, Callesen H. 2004. Rapid growth and elongation of bovine blastocysts in vitro in a three-dimensional gel system. Theriogenology, 62, 1253-63.
Valdez Magana G, Rodriguez A, Zhang H, Webb R, Alberio R. 2014. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Developmental Biology, 387, 15-27.
Wamaitha S E, Grybel K J, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah S K, Healy L, Lea R A, Molina-Arcas M, Devito L G, Elder K, Snell P, Christie L, Downward J, Turner J M A, Niakan K K. 2020. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 11, 764.
Yuan Y, Spate L D, Redel B K, Tian Y, Zhou J, Prather R S, Roberts R M. 2017. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 114, E5796-E5804.
Zhang X, Huang C T, Chen J, Pankratz M T, Xi J, Li J, Yang Y, Lavaute T M, Li X J, Ayala M, Bondarenko G I, Du Z W, Jin Y, Golos T G, Zhang S C. 2010. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell, 7, 90-100.
Zhao C, Shi J, Zhou R, He X, Yang H, Wu Z. 2018. DZNep and UNC0642 enhance in vitro developmental competence of cloned pig embryos. Reproduction, 157, 359-369.
Zhi M, Zhang J, Tang Q, Yu D, Gao S, Gao D, Liu P, Guo J, Hai T, Gao J, Cao S, Zhao Z, Li C, Weng X, He M, Chen T, Wang Y, Long K, Jiao D, Li G, Zhang J, Liu Y, Lin Y, Pang D, Zhu Q, Chen N, Huang J, Chen X, Yao Y, Yang J, Xie Z, Huang X, Liu M, Zhang R, Li Q, Miao Y, Tian J, Huang X, Ouyang H, Liu B, Xie W, Zhou Q, Wei H, Liu Z, Zheng C, Li M, Han J. 2022. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 32, 383-400.
|