Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
OIVC medium enhances developmental competence in porcine preimplantation embryos

Yongjiang Yang1,2,3,4*, Ying Zhang1,2,4*Qiang Liu1,6*Shuangjie Tian1,2,3,4, Wanyun Feng1,2,3,4Fangwen Deng1,2,3,4, Guosong Qin1,2,4, Yanfang Wang5#, Jianguo Zhao1,2,3,4#

1 Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.

3 University of Chinese Academy of Sciences, Beijing 100049, China.

4 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.

5 Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

6 Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【目的】为了解决猪体外胚胎发育能力的不足,特别是内细胞团(ICM)细胞数量及囊胚总细胞数显著低于同时期体内胚胎的问题,本研究致力于开发高效稳定的猪胚胎体外培养体系,为提高体外胚胎生物技术应用的效率提供高效策略。【方法】通过优化胚胎激活第5天的培养基成分,包括Advanced DMEM/F12FBS相结合,以及在此培养体系的基础上基于JAK/STAT3Activin/TGF-βFGF/ERK通路筛选出的Activin AIGF1IL6等生长因子的继续探究,系统性优化传统的PZM-3培养体系。通过免疫荧光染色等技术评估胚胎质量,同时利用转录组测序探讨优化培养体系的潜在分子机制。【结果】在PZM-3培养基中添加50% Advanced DMEM/F125% FBS(即Day 5培养体系)能够使猪孤雌激活(PA)囊胚总细胞数提高2.5倍。研究还突出FBS不能被Knockout血清替代物(KSR)替代,发现高浓度的KSR会导致囊胚率下降。在Day 5培养基中进一步加入Activin A(即OIVC培养体系),不仅能够使PA囊胚总细胞数提高4.5倍,还能提高ICM细胞数4.5倍。此外,OIVC培养体系对体细胞核移植(SCNT)和体外受精(IVF)胚胎同样有效,显著提升囊胚发育质量。转录组测序分析显示,相较于不添加Activin ADay 5培养体系,OIVC处理的胚胎中,大多数差异表达基因下调,且主要富集的信号通路包括Activin A/TGF-β。在这些下调基因中,PAX6可能是一个潜在的关键基因,影响ICM细胞的数量,进而影响胚胎发育能力。【结论】本研究建立了一种新型的猪胚胎体外培养体系,显著提高了体外胚胎发育的质量,为早期胚胎发育机制的研究、以及生物医学研究和农业动物生产提供了高效的优质胚胎方案。



Abstract  

The developmental capacity of in vitro embryos is critical for the success of embryonic biotechnology. However, in vitro embryos often exhibit suboptimal quality, with fewer inner cell mass (ICM) cells and reduced total blastocyst cell counts compared to in vivo embryos. To address this, we optimized the conventional PZM-3 culture medium by supplementing 50% Advanced DMEM/F12 and 5% FBS on the fifth day after embryo activation (Day 5 medium) and resulted in a 2.5-fold increase in the total cell numbers of parthenogenetic activation (PA) derived blastocysts. Further enhancement was achieved by incorporating Activin A in Day 5 medium, creating the OIVC (Optimized In Vitro Culture) medium, which significantly increased both the total cell numbers and the ICM cell counts by 4.5-fold in the blastocyst stage. The OIVC medium also improved the quality of pig somatic cloned and in vitro fertilized (IVF) embryos. RNA sequencing analysis revealed that in the OIVC-treated embryos, most of the differentially expressed genes were downregulated compared to the control group, with the main enriched signaling pathways including Activin A/TGF-β. Notably, among these downregulated genes, PAX6 may be as a potential key gene influencing the number of ICM cells. This study presents a novel culture system that markedly enhances pig in vitro embryo quality, providing an efficient strategy for generating cloned pigs based on somatic cell nuclear transfer (SCNT) technology.

Keywords:  Blastocyst       ICM              PA              IVF              SCNT              Activin A              PAX6  
Online: 17 March 2025  
Fund: 

This work was supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04074, 2023ZD0404604), the National Natural Science Fund for Distinguished Young Scholars (31925036 and 32025034), the Program of National Natural Science Foundation of China (32230100, 32330099, 32470643 and 32201257), the National Key Research and Development Program of China (2020YFA0509503, 2022YFF0710700, 2021YFA0805902, 2022XAGG0121, 2022YFF1002803), the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001). 

About author:  *: These authors contributed equally #Correspondence should be addressed to Yanfang Wang, Email: wangyanfang@caas.cn; Jianguo Zhao, Email: zhaojg@ioz.ac.cn

Cite this article: 

Yongjiang Yang, Ying Zhang, Qiang Liu, Shuangjie Tian, Wanyun Feng, Fangwen Deng, Guosong Qin, Yanfang Wang, Jianguo Zhao. 2025. OIVC medium enhances developmental competence in porcine preimplantation embryos. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.005

Alberio R, Croxall N, Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 19, 1627-36.

Bedzhov I, Leung C Y, Bialecka M, Zernicka-Goetz M. 2014. In vitro culture of mouse blastocysts beyond the implantation stages. Nature Protocols, 9, 2732-9.

Blakeley P, Fogarty N M, del Valle I, Wamaitha S E, Hu T X, Elder K, Snell P, Christie L, Robson P, Niakan K K. 2015. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development, 142, 3151-65.

Brandao D O, Maddox-Hyttel P, Lovendahl P, Rumpf R, Stringfellow D, Callesen H. 2004. Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biology of Reproduction, 71, 2048-55.

Chambers S M, Fasano C A, Papapetrou E P, Tomishima M, Sadelain M, Studer L. 2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275-80.

Chen P R, Spate L D, Leffeler E C, Benne J A, Cecil R F, Hord T K, Prather R S. 2020. Removal of hypotaurine from porcine embryo culture medium does not impair development of in vitro-fertilized or somatic cell nuclear transfer-derived embryos at low oxygen tension. Molecular Reproduction and Development, 87, 773-782.

Chen P R, Uh K, Redel B K, Reese E D, Prather R S, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. Frontiers in Animal Science, 2022.

Cole J D, McHaney K M, Rabiee B, Gao J, Rodriguez C, Miller D A, Liu M, Grannonico M, Norat P, Zhang H F, Djalilian A R, Liu X. 2022. Long-term retinal protection by MEK inhibition in Pax6 haploinsufficiency mice. Experimental Eye Research, 218, 109012.

Cuello C, Gomis J, Almiñana C, Maside C, Sanchez-Osorio J, Gil M, Sánchez A, Parrilla I, Vazquez J, Roca J. 2013. Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 136, 296-302.

Fang X, Tanga B M, Bang S, Seong G, Saadeldin I M, Lee S, Cho J. 2022. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos. Molecular Reproduction and Development, 89, 54-65.

Fu B, Liu D, Ma H, Li Z Q, Wang L, Bai J. 2011. Effect of Pyruvate and Lactic Acid on the Development of Porcine Embryos. Advanced Materials Research, 343-344, 611 - 617.

Hou N, Du X, Wu S. 2022. Advances in pig models of human diseases. Animal Models and Experimental Medicine, 5, 141-152.

Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar P J, Aruga J, Matsuo I, Kondoh H. 2012. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development, 139, 3926-37.

Jin J X, Lee S, Setyawan E M N, Taweechaipaisankul A, Kim G A, Han H J, Ahn C, Lee B C. 2018. A potential role of knockout serum replacement as a porcine follicular fluid substitute for in vitro maturation: Lipid metabolism approach. Journal of Cellular Physiology, 233, 6984-6995.

Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H. 2001. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes and Development, 15, 1272-86.

Kikuchi K, Onishi A, Kashiwazaki N, Iwamoto M, Noguchi J, Kaneko H, Akita T, Nagai T. 2002. Successful Piglet Production after Transfer of Blastocysts Produced by a Modified In Vitro System. Biology of Reproduction, 66, 1033-1041.

Kwon J, Li Y H, Jo Y J, Oh Y, Namgoong S, Kim N H. 2019. Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ, 6, e5840.

Lee M, Oh J-N, Kim S-H, Choi K-H, Lee D-K, Choe G C, Jeong J, Lee C-K. 2020. Identification of the Role of SOX2 During Early Embryogenesis in Pigs. International Journal of Biology sciences, 3, 179.

Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney A J, Liu Z. 2015. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Developmental Dynamics, 244, 619-27.

Liu X, Zhou Y, Qin C, Zhu X. 2022. TNFRSF9 Suppressed the Progression of Breast Cancer via the p38MAPK/PAX6 Signaling Pathway. Journal of Oncology, 2022, 8549781.

Lo J H, Edwards M, Langerman J, Sridharan R, Plath K, Smale S T. 2022. Oct4:Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells. Genes and Development, 36, 1079-1095.

Lunney J K, Van Goor A, Walker K E, Hailstock T, Franklin J, Dai C. 2021. Importance of the pig as a human biomedical model. Science Translational Medicine, 13, eabd5758.

Machado G M, Ferreira A R, Pivato I, Fidelis A, Spricigo J F, Paulini F, Lucci C M, Franco M M, Dode M A. 2013. Post-hatching development of in vitro bovine embryos from day 7 to 14 in vivo versus in vitro. Molecular Reproduction and Development, 80, 936-47.

Malin K, Witkowska-Pilaszewicz O, Papis K. 2022. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology, 189, 246-254.

Mito T, Yoshioka K, Yamashita S, Suzuki C, Noguchi M, Hoshi H. 2012. Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium. Reproduction, Fertility and Development, 24, 443-450.

Mun S-E, Sim B-W, Yoon S-B, Jeong P-S, Yang H-J, Choi S-A, Park Y-H, Kim Y-H, Kang P, Jeong K-J. 2017. Dual effect of fetal bovine serum on early development depends on stage-specific reactive oxygen species demands in pigs. PloS one, 12, e0175427.

Nursalim Y, Groom K, Blenkiron C, Chamley L. 2021. A simple method to isolate term trophoblasts and maintain them in extended culture. Placenta, 108, 1-10.

Oestrup O, Hall V, Petkov S, Wolf X, Hyldig S, Hyttel P. 2009. From Zygote to Implantation: Morphological and Molecular Dynamics during Embryo Development in the Pig. Reproduction in Domestic Animals, 44, 39-49.

Okada K, Krylov V, Kren R, Fulka J, Jr. 2006. Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. Journal of Reproduction and Development, 52, 91-8.

Ramos-Ibeas P, Sang F, Zhu Q, Tang W W C, Withey S, Klisch D, Wood L, Loose M, Surani M A, Alberio R. 2019. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 10, 500.

Robinson M, Gilbert S F, Waters J A, Lujano-Olazaba O, Lara J, Alexander L J, Green S E, Burkeen G A, Patrus O, Sarwar Z, Holmberg R, Wang C, House C D. 2021. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel), 13.

Santos R R, Schoevers E J, Roelen B A J. 2014. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reproductive Biology and Endocrinology, 12, 117.

Sheng J, Wang L, Tang P M, Wang H L, Li J C, Xu B H, Xue V W, Tan R Z, Jin N, Chan T F, Huang X R, Ma R C, Lan H Y. 2021. Smad3 deficiency promotes beta cell proliferation and function in db/db mice via restoring Pax6 expression. Theranostics, 11, 2845-2859.

Srirattana K, Kaneda M, Parnpai R. 2022. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. International Journal of Molecular Sciences, 23.

Sun J, Yoon J, Lee M, Hwang Y-s, Daar I O. 2020. Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway. Scientific Reports, 10.

Swain N, Thakur M, Pathak J, Swain B. 2020. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. Journal of Oral and Maxillofacial Pathology, 24, 368-373.

Trigal B, Gomez E, Diez C, Caamano J N, Martin D, Carrocera S, Munoz M. 2011. In vitro development of bovine embryos cultured with activin A. Theriogenology, 75, 584-8.

Vackova I, Ungrova A, Lopes F. 2007. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 53, 1137-49.

Vajta G, Alexopoulos N I, Callesen H. 2004. Rapid growth and elongation of bovine blastocysts in vitro in a three-dimensional gel system. Theriogenology, 62, 1253-63.

Valdez Magana G, Rodriguez A, Zhang H, Webb R, Alberio R. 2014. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Developmental Biology, 387, 15-27.

Wamaitha S E, Grybel K J, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah S K, Healy L, Lea R A, Molina-Arcas M, Devito L G, Elder K, Snell P, Christie L, Downward J, Turner J M A, Niakan K K. 2020. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 11, 764.

Yuan Y, Spate L D, Redel B K, Tian Y, Zhou J, Prather R S, Roberts R M. 2017. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 114, E5796-E5804.

Zhang X, Huang C T, Chen J, Pankratz M T, Xi J, Li J, Yang Y, Lavaute T M, Li X J, Ayala M, Bondarenko G I, Du Z W, Jin Y, Golos T G, Zhang S C. 2010. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell, 7, 90-100.

Zhao C, Shi J, Zhou R, He X, Yang H, Wu Z. 2018. DZNep and UNC0642 enhance in vitro developmental competence of cloned pig embryos. Reproduction, 157, 359-369.

Zhi M, Zhang J, Tang Q, Yu D, Gao S, Gao D, Liu P, Guo J, Hai T, Gao J, Cao S, Zhao Z, Li C, Weng X, He M, Chen T, Wang Y, Long K, Jiao D, Li G, Zhang J, Liu Y, Lin Y, Pang D, Zhu Q, Chen N, Huang J, Chen X, Yao Y, Yang J, Xie Z, Huang X, Liu M, Zhang R, Li Q, Miao Y, Tian J, Huang X, Ouyang H, Liu B, Xie W, Zhou Q, Wei H, Liu Z, Zheng C, Li M, Han J. 2022. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 32, 383-400.

No related articles found!
No Suggested Reading articles found!