Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Cell-adapted African swine fever virus Pig/HLJ/18 is highly attenuated but fails to induce immune protection against a challenge with its parental virus

Wan Wang1*, Li Yin1*, Zhenjiang Zhang1, Fan Liu1, Xin Zhang1, Zhigang Wang1, Rui Zhao1, 2, Menglong Cao1, Ying Zhang1, Leilei Ding1, Renqiang Liu1, Encheng Sun1, Xiangpeng Sheng1, Weldu Tesfagaber1, Fang Li1, Xijun He1, Zhigao Bu1, Yuanmao Zhu1#, Dongming Zhao1, 2#

State Key Laboratory for Animal Disease Control and Prevention/National African Swine Fever Para-reference Laboratory/National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China

 Highlight 

A cell-adapted virus, named HLJ18/BK33, was successfully obtained by serially passaging the ASFV Pig/HLJ/18 in BK2258 cells.

ASFV HLJ18/BK33 exhibited clear CPE and efficient replication in BK2258 cells.

ASFV HLJ18/BK33 was highly attenuated with significantly reduced biosafety risks.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

非洲猪瘟(African swine feverASF)是由非洲猪瘟病毒(African swine fever virusASFV)引起的一种急性、出血性病,死亡率高达100%ASF严重危害全球养猪业的健康发展,除越南外仍无可用的商品化疫苗和抗病毒药物。传代致弱是ASF疫苗研究的重要技术路径本研究将ASFV Pig/HLJ/18株在野猪肾细胞(Boar kidney cellsBK2258)中连续传代成功获得了细胞适应株,命名为HLJ18/BK33株。该适应株在BK2258细胞中形成明显的细胞病变效应(CPE),并能稳定且高效地复制,同时在猪肺泡巨噬细胞(PAM)中保留高效复制能力。全基因组序列分析显示,与Pig/HLJ/18相比,HLJ18/BK33在181,027-187,188位存在6162 bp大片段缺失,同时存在4个单核苷酸缺失,导致移码突变,使3个开放阅读框(ORF)(ASFV_G_ACD_00120ASFV_G_ACD_00350A179L)截短表达,2ORFMGF_110-14LMGF_110-11L)融合表达。此外,还有4个基因发生错义突变,导致单个氨基酸的改变。将HLJ18/BK33株以106 TCID50/头的剂量肌肉注射接种56-8周龄的SPF猪,28天后所有猪均健康存活,体温正常,未见异常临床症状,表明其毒力完全丧失。用亲本毒株Pig/HLJ/18进行攻毒,结果4头猪出现持续性发热和ASF相关的临床症状,并在攻毒后13天内死亡;1头猪出现一过性体温升高,在攻毒后28天观察期仍健康存活。以上结果证明,HLJ18/BK33高度减毒,但不能提供针对亲本强毒株的免疫保护。本研究获得的细胞适应株HLJ18/BK33不具备开发疫苗的潜力,但其BK2258细胞中稳定复制并形成典型的CPE且高度减毒,大大降低了生物安全风险,是病毒与宿主相互作用、抗病毒药物筛选、诊断方法的研制和病毒生物学特性研究的理想毒株。



Abstract  

African swine fever (ASF) is an acute, hemorrhagic disease caused by the African swine fever virus (ASFV), with a mortality up to 100%. The disease poses a seriously threat to the global swine industry, yet no commercial vaccines or antiviral drugs are available other than in VietnamASFV attenuation through serial passages is a key approach for vaccine development. In this study, a cell-adapted virus, named HLJ18/BK33, was successfully generated by serially passaging the ASFV Pig/HLJ/18 in wild boar kidney cells (BK2258). This adapted virus exhibited clear cytopathic effects (CPE) and replicated stably and efficiently in BK2258 cells and porcine alveolar macrophages. Whole-genome sequence analysis revealed that, compared with the Pig/HLJ/18 virus, HLJ18/BK33 had a large deletion of 6162 bp from sites 181,027 to 187,188, and four single nucleotide deletions that led to frameshift mutations, resulting in the truncated expression of three open reading frames (ORFs) (ASFV_G_ACD_00120, ASFV_G_ACD_00350, and A179L), and the fusion expression of two ORFs (MGF_110-14L and MGF_110-11L). Additionally, four genes exhibited missense mutations, leading to single amino acid changes. Five pigs intramuscularly inoculated with 106 TCID50 of HLJ18/BK33 remained healthy with normal body temperatures and no clinical signs, indicating a high attenuation of virulence for HLJ18/BK33 in pigs. Upon challenge with the parental Pig/HLJ/18 virus, four of the five inoculated pigs developed persistent high fever and ASF-related clinical signs and died within 13 days of the challenge; the remaining pig developed transient fever but survived until the end of the observation period. These results indicate that the HLJ18/BK33 virus is highly attenuated but cannot induce protection against the parental virulent virus. Even though the HLJ18/BK33 virus is not a good vaccine candidate, its stable replication and distinct CPE in BK2258 cells as well as its low biosafety risk make it a valuable resource for studies on virus-host interactions, antiviral drug screening, diagnostic methods, and biological characteristics. 

Keywords:  African swine fever virus       cell-adapted virus       attenuation       protection  
Online: 22 March 2025  
Fund: 

This work was supported by Central public-interest Scientific Institution Basal Research Fund (CAAS-ZDRW202409), Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSLPDCP-202301), the National Key Research and Development Program of China (2022YFD1800604, 2021YFD1800101), and the Heilongjiang Provincial Natural Science Foundation of China (JQ2023C005).

About author:  #Correspondence Yuanmao Zhu, E-mail: zhuyuanmao@caas.cn; Dongming Zhao, E-mail: zhaodongming@caas.cn *Wan Wang and Li Yin equally contributed to this study.

Cite this article: 

Wan Wang, Li Yin, Zhenjiang Zhang, Fan Liu, Xin Zhang, Zhigang Wang, Rui Zhao, Menglong Cao, Ying Zhang, Leilei Ding, Renqiang Liu, Encheng Sun, Xiangpeng Sheng, Weldu Tesfagaber, Fang Li, Xijun He, Zhigao Bu, Yuanmao Zhu, Dongming Zhao. 2025. Cell-adapted African swine fever virus Pig/HLJ/18 is highly attenuated but fails to induce immune protection against a challenge with its parental virus. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.017

Ali Mazloum N G Z, A. S. Pershin, I. V. Shevchenko, I. Yu. Zhukov, D. N. Fedoseyeva, D. V. Sharypova, A. S. Igolkin, N. N. Vlasov. 2018. ANALYSIS OF CHANGES IN AFRICAN SWINE FEVER VIRUS GENETIC STRUCTURE AND BIOLOGICAL PROPERTIES DURING ADAPTATION TO CONTINUOUS CELL CULTURE. Veterinary Science Today, 4, p. 21-25. doi,https://doi.org/10.29326/2304-196x-2018-4-27-21-25

Arias M, de la Torre A, Dixon L, Gallardo C, Jori F, Laddomada A, Martins C, Parkhouse R M, Revilla Y, Rodriguez F A J. 2017. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines (Basel), 5. doi,10.3390/vaccines5040035.

Balysheva V I, Prudnikova E Y, Galnbek T V, Balyshev V M. 2015. Immunological properties of attenuated variants of African swine fever virus isolated in the Russian Federation. Russian Agricultural Sciences, 41, 178-182. doi,10.3103/S1068367415020056.

Blome S, Gabriel C, Beer M. 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 32, 3879-3882. doi,10.1016/j.vaccine.2014.05.051.

Borca M V, Rai A, Ramirez-Medina E, Silva E, Velazquez-Salinas L, Vuono E, Pruitt S, Espinoza N, Gladue D P. 2021. A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. Journal of Virology, 95, e0012321. doi,10.1128/jvi.00123-21.

Cadenas-Fernández E, Sánchez-Vizcaíno J M, van den Born E, Kosowska A, van Kilsdonk E, Fernández-Pacheco P, Gallardo C, Arias M, Barasona J A. 2021. High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines (Basel), 9. doi,10.3390/vaccines9030242.

Carrascosa A L, Bustos M J, de Leon P. 2011. Methods for growing and titrating African swine fever virus: field and laboratory samples. Current Protocols in Cell Biology, Chapter 26, 26.14.21-26.14.25. doi,10.1002/0471143030.cb2614s53.

Danzetta M L, Marenzoni M L, Iannetti S, Tizzani P, Calistri P, Feliziani F. 2020. African Swine Fever: Lessons to Learn From Past Eradication Experiences. A Systematic Review. Frontiers In Veterinary Science, 7, 296. doi,10.3389/fvets.2020.00296.

Ding L L, Ren T, Huang L Y, Weldu T, Zhu Y M, Li F, Sun E C, Bu Z G, Zhao D M. 2023. Developing a duplex ARMS-qPCR method to differentiate genotype I and II African swine fever viruses based on their B646L genes. Journal of Integrative Agriculture, 22, 1603-1607. doi,10.1016/j.jia.2023.02.035.

Dixon L K, Sun H, Roberts H. 2019. African swine fever. Antiviral Research, 165, 34-41. doi,10.1016/j.antiviral.2019.02.018.

Enjuanes L, Carrascosa A L, Moreno M A, Viñuela E. 1976. Titration of African swine fever (ASF) virus. Journal of General Virology, 32, 471-477. doi,10.1099/0022-1317-32-3-471.

Gaudreault N N, Madden D W, Wilson W C, Trujillo J D, Richt J A. 2020. African Swine Fever Virus: An Emerging DNA Arbovirus. Frontiers In Veterinary Science, 7, 215. doi,10.3389/fvets.2020.00215.

Gaudreault N N, Richt J A. 2019. Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines (Basel), 7. doi,10.3390/vaccines7020056.

Goatley L C, Reis A L, Portugal R, Goldswain H, Shimmon G L, Hargreaves Z, Ho C S, Montoya M, Sánchez-Cordón P J, Taylor G, Dixon L K, Netherton C L. 2020. A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs Against Fatal Disease. Vaccines (Basel), 8. doi,10.3390/vaccines8020234.

Greig A S, Boulanger P, Bannister G L. 1967. African swine fever. V. Cultivation of the virus in primary pig kidney cells. Canadian Journal of Comparative Medicine and Veterinary Science, 31, 24-31.

Hess W R. 1971. African swine fever virus. Virology Monograph, 9, 1-33. doi,10.1007/978-3-7091-3987-5_1. 

Hurtado C, Bustos M J, Carrascosa A L. 2010. The use of COS-1 cells for studies of field and laboratory African swine fever virus samples. Journal of Virological Methods, 164, 131-134. doi,10.1016/j.jviromet.2009.11.030.

Kim M H, Subasinghe A, Kim Y, Kwon H I, Cho Y, Chathuranga K, Cha J W, Moon J Y, Hong J H, Kim J, Lee S C, Dodantenna N, Gamage N, Chathuranga W A G, Kim Y, Yoon I J, Lee J Y, Mo I P, Jheong W, Yoo S S, Lee J S. 2024. Development and characterization of high-efficiency cell-adapted live attenuated vaccine candidate against African swine fever. Emerging Microbes & Infections, 13, 2432372. doi,10.1080/22221751.2024.2432372.

King D P, Reid S M, Hutchings G H, Grierson S S, Wilkinson P J, Dixon L K, Bastos A D, Drew T W. 2003. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 107, 53-61. doi,10.1016/s0166-0934(02)00189-1.

Krug P W, Holinka L G, O'Donnell V, Reese B, Sanford B, Fernandez-Sainz I, Gladue D P, Arzt J, Rodriguez L, Risatti G R, Borca M V. 2015. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology, 89, 2324-2332. doi,10.1128/jvi.03250-14.

Lacasta A, Ballester M, Monteagudo P L, Rodríguez J M, Salas M L, Accensi F, Pina-Pedrero S, Bensaid A, Argilaguet J, López-Soria S, Hutet E, Le Potier M F, Rodríguez F. 2014. Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 88, 13322-13332. doi,10.1128/jvi.01893-14.

Monteagudo P L, Lacasta A, López E, Bosch L, Collado J, Pina-Pedrero S, Correa-Fiz F, Accensi F, Navas M J, Vidal E, Bustos M J, Rodríguez J M, Gallei A, Nikolin V, Salas M L, Rodríguez F. 2017. BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. Journal of Virology, 91. doi,10.1128/jvi.01058-17.

Pires S, Ribeiro G, Costa J V. 1997. Sequence and organization of the left multigene family 110 region of the Vero-adapted L60V strain of African swine fever virus. Virus Genes, 15, 271-274. doi,10.1023/a:1007992806818.

REED L J, MUENCH H. 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. American Journal of Epidemiology, 27, 493-497. doi,10.1093/oxfordjournals.aje.a118408.

Rodríguez J M, Moreno L T, Alejo A, Lacasta A, Rodríguez F, Salas M L. 2015. Genome sequence of African swine fever virus BA71, the virulent parental strain of the nonpathogenic and tissue-culture adapted BA71V. PloS one, 10, e0142889.

Salguero F J, Ruiz-Villamor E, Bautista M J, Sánchez-Cordón P J, Carrasco L, Gómez-Villamandos J C. 2002. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Veterinary Immunology and Immunopathology, 90, 11-22. doi,10.1016/s0165-2427(02)00225-8.

Sun E, Huang L, Zhang X, Zhang J, Shen D, Zhang Z, Wang Z, Huo H, Wang W, Huangfu H, Wang W, Li F, Liu R, Sun J, Tian Z, Xia W, Guan Y, He X, Zhu Y, Zhao D, Bu Z. 2021a. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes & Infections, 10, 2183-2193. doi,10.1080/22221751.2021.1999779.

Sun E, Zhang Z, Wang Z, He X, Zhang X, Wang L, Wang W, Huang L, Xi F, Huangfu H, Tsegay G, Huo H, Sun J, Tian Z, Xia W, Yu X, Li F, Liu R, Guan Y, Zhao D, Bu Z. 2021b. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China-Life Science, 64, 752-765. doi,10.1007/s11427-021-1904-4.

Truong Q L, Wang L, Nguyen T A, Nguyen H T, Le A D, Nguyen G V, Vu A T, Hoang P T, Le T T, Nguyen H T, Nguyen H T T, Lai H L T, Bui D A T, Huynh L M T, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen L T, Shi J. 2024. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses, 16. doi,10.3390/v16081326.

Tsegay G, Tesfagaber W, Zhu Y, He X, Wang W, Zhang Z, Sun E, Zhang J, Guan Y, Li F, Liu R, Bu Z, Zhao D. 2022. Novel P22-monoclonal antibody based blocking ELISA for the detection of African swine fever virus antibodies in serum. Biosafety and Health. doi,https://doi.org/10.1016/j.bsheal.2022.04.002.

Wang W, Zhang Z-j, Tesfagaber W, Zhang J-w, Li F, Sun E-c, Tang L-j, Bu Z-g, Zhu Y-m, Zhao D-m. 2023. Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies1. Journal of Integrative Agriculture. doi,https://doi.org/10.1016/j.jia.2023.05.021.

Wardley R C, de M A C, Black D N, de Castro Portugal F L, Enjuanes L, Hess W R, Mebus C, Ordas A, Rutili D, Sanchez Vizcaino J, Vigario J D, Wilkinson P J, Moura Nunes J F, Thomson G. 1983. African Swine Fever virus. Brief review. Archives of Virology, 76, 73-90. doi,10.1007/bf01311692.

World Organisation for Animal Health W. 2019. African swine fever. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2019 Vol 2 Chapter 3.8.1. [2022 05/03]. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf.

Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, Liu X, Wang L, Zhang J, Wu X, Guan Y, Chen W, Wang X, He X, Bu Z. 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes & Infections, 8, 438-447. doi,10.1080/22221751.2019.1590128.

Zhao D, Sun E, Huang L, Ding L, Zhu Y, Zhang J, Shen D, Zhang X, Zhang Z, Ren T, Wang W, Li F, He X, Bu Z. 2023. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nature Communications, 14, 3096. doi,10.1038/s41467-023-38868-w.

No related articles found!
No Suggested Reading articles found!