Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability
ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen
2022, 21 (6): 1755-1771.   DOI: 10.1016/S2095-3119(21)63730-9
Abstract188)      PDF in ScienceDirect      
Legume cultivars affect N uptake, component crop growth, and soil physical and chemical characteristics in maize–legume intercropping systems.  However, how belowground interactions mediate root growth, N fixation, and nodulation of different legumes to affect N uptake is still unclear.  Hence, a two-year experiment was conducted with five planting patterns, i.e., maize–soybean strip intercropping (IMS), maize–peanut strip intercropping (IMP), and corresponding monocultures (monoculture maize (MM), monoculture soybean (MS), and monoculture peanut (MP)), and two N application rates, i.e., no N fertilizer (N–) and conventional N fertilizer (N+), to examine relationships between N uptake and root distribution of crops, legume nodulation and soil N availability.  Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.  Compared with the monoculture system, the N uptake of the intercropping systems increased by 31.7–45.4% in IMS and by 7.4–12.2% in IMP, respectively.  The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%, and that of intercropped peanuts significantly decreased by 46.6% compared with the corresponding monocultures.  Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.  The root length density (RLD) and root surface area density (RSAD) of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.  The roots of intercropped peanuts were confined, which resulted in decreased RLD and RSAD compared with the monoculture.  The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS, and those of peanut were significantly lower in IMP than in MP.  The soil protease, urease, and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture, while the enzyme activities of peanut were significantly lower in IMP than in MP.  The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures, while that of IMP was significantly lower than in MP.  In summary, the IMS system was more beneficial to N uptake than the IMP system.  The intercropping of maize and legumes can promote the N uptake of maize, thus reducing the need for N application and improving agricultural sustainability.

Reference | Related Articles | Metrics
Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field
DENG Jun-cai, LI Xiao-man, XIAO Xin-li, WU Hai-jun, YANG Cai-qiong, LONG Xi-yang, ZHANG Qi-hui, Nasir Iqbal, WANG Xiao-chun, YONG Tai-wen, DU Jun-bo, YANG Feng, LIU Wei-guo, ZHANG Jing, WU Xiao-ling, WU Yu-shan, YANG Wen-yu, LIU Jiang
2022, 21 (2): 336-350.   DOI: 10.1016/S2095-3119(20)63594-8
Abstract204)      PDF in ScienceDirect      
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold (FM) stress.  If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality.  To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed.  The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome.  The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide.  Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress.  These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids.  Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality.  In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field.  This study provides a more profound insight into seed deterioration caused by FM stress.
Reference | Related Articles | Metrics
Response of leaf stomatal and mesophyll conductance to abiotic stress factors
LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng
2022, 21 (10): 2787-2804.   DOI: 10.1016/j.jia.2022.07.036
Abstract264)      PDF in ScienceDirect      

Plant photosynthesis assimilates CO2 from the atmosphere, and CO2 diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.  The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors, which affect the CO2 concentrations at carboxylation sites to control photosynthetic rates.  Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.  However, reviews on the abiotic stress factors that systematically regulate plant CO2 diffusion are rare.  Therefore, in this review, the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors (such as light intensity, drought, CO2 concentration and temperature) and their physiological mechanisms are summarized.  Finally, future research trends are also investigated.

Reference | Related Articles | Metrics
Crop photosynthetic response to light quality and light intensity
Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng
2021, 20 (1): 4-23.   DOI: 10.1016/S2095-3119(20)63227-0
Abstract193)      PDF in ScienceDirect      
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity.  Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth.  The two components of light (light quality and light intensity) greatly affect plant photosynthesis and other plant’s morphological, physiological and biochemical parameters.  The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions.  To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development.  This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species (ROS) production, antioxidants, and hormone production.
 
Reference | Related Articles | Metrics
Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China
ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng
2020, 19 (11): 2784-2791.   DOI: 10.1016/S2095-3119(20)63185-9
Abstract118)      PDF in ScienceDirect      
The objectives of this study were to investigate antimicrobial resistance of Streptococcus uberis and Streptococcus parauberis isolated from cows with bovine clinical mastitis in China and to examine the distribution of resistance- and virulence-related gene patterns.  Antimicrobial susceptibility was determined by the E-test.  Genes encoding antimicrobial resistance and invasiveness factors were examined by PCR.  A total of 27 strains were obtained from 326 mastitis milk samples.  Streptococcus parauberis isolates (n=11) showed high resistance to erythromycin (90.9%), followed by tetracycline (45.5%), chloramphenicol (36.4%) and clindamycin (27.3%).  Streptococcus uberis isolates (n=16) were highly resistant to tetracycline (81.3%) and clindamycin (62.5%).  Both species were susceptible to ampicillin.  The most prevalent resistance gene in S. uberis was tetM (80.0%), followed by blaZ (62.5%) and ermB (62.5%).  However, tetM, blaZ, and ermB genes were only found in 27.3, 45.5, and 27.3%, respectively, of S. parauberis.  In addition, all of the isolates carried at least one selected virulence-related gene.  The most prevalent virulence-associated gene pattern in the current study was sua+pauA/skc+gapC+hasC detected in 22.2% of the strains.  One S. uberis strain carried 7 virulence-associated genes and belonged to the sua+pauA/skc+gapC+cfu+hasA+hasB+hasC pattern.  More than 59.3% of analysed strains carried 4 to 7 virulence-related genes.  Our findings demonstrated that S. parauberis and S. uberis isolated from clinical bovine mastitis cases in China exhibited diverse molecular ecology, and that the strains were highly resistant to antibiotics commonly used in the dairy cow industry.  The data obtained in the current study contribute to a better understanding of the pathogenesis of bacteria in mastitis caused by these pathogens, and the findings are relevant to the development of multivalent vaccines and targeted prevention procedures.
Reference | Related Articles | Metrics
Shade stress decreases stem strength of soybean through restraining lignin biosynthesis
LIU Wei-guo, Sajad Hussain, LIU Ting, ZOU Jun-lin, REN Meng-lu, ZHOU Tao, LIU Jiang, YANG Feng, YANG Wen-yu
2019, 18 (1): 43-53.   DOI: 10.1016/S2095-3119(18)61905-7
Abstract286)      PDF in ScienceDirect      
Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system.  In the field experiments, three soybean cultivars Nandou 032-4 (shade susceptible cultivar; B1), Jiuyuehuang (moderately shade tolerant cultivar; B2), and Nandou 12 (shade tolerant cultivar; B3) were used to evaluate the relationship between stem stress and lignin metabolism in the stem of soybean.  Results showed that the intercropped soybean was in variable light condition throughout the day time and co-growth stage with maize.  The xylem area and cross section ratio played a main role to form the stem stress.  The B3 both in intercropping and monocropping expressed a high stem stress with higher xylem area, lignin content, and activity of enzymes (phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD)) than those of B1 and B2.  Among the soybean cultivars and planting pattern, lignin content was positively correlated with stem stress.  However, a negative correlation was found between lignin content and actual rate of lodging.  In conclusion, the shade tolerant soybean cultivar had larger xylem area, higher lignin content and activities of CAD, 4CL, PAL, and POD than other soybean cultivars in intercropping.  The lodging in maize-soybean intercropping can be minimized by planting shade tolerant and lodging resistant cultivar of soybean.  The lignin content in stem could be a useful indicator for the evaluation of lodging resistance of soybean in intercropping and activities of enzymes were the key factors that influence the lignin biosynthesis.
Reference | Related Articles | Metrics
Alternate row mulching optimizes soil temperature and water conditions and improves wheat yield in dryland farming
YAN Qiu-yan, DONG Fei, LOU Ge, YANG Feng, LU Jin-xiu, LI Feng, ZHANG Jian-cheng, LI Jun-hui, DUAN Zeng-qiang
2018, 17 (11): 2558-2569.   DOI: 10.1016/S2095-3119(18)61986-0
Abstract339)      PDF (1844KB)(252)      
Straw mulching allows for effective water storage in dryland wheat production.  Finding a suitable straw mulching model that facilitates wheat growth was the objective of this study.  A 2-year field experiment was conducted to investigate the effects of two straw mulching patterns (FM, full coverage within all the rows; HM, half coverage within alternate rows) and two mulching rates (4.5 and 9.0 t ha–1) on soil moisture, soil temperature, grain yield, and water use efficiency (WUE) of winter wheat in northern China, with no mulching (M0) as the control.  Results showed that mulching increased the soil water storage in all growth stages under high mulching rates, with a stronger effect in later growth stages.  Water storage under the HM model was greater in later stages than under the FM model.  Soil water content of HM groups was higher than that of FM groups, especially in surface soil layers.  Evapotranspiration decreased in mulched groups and was higher under high mulching rates.  Aboveground biomass during each growth stage under the HM model was higher than that under M0 and FM models with the same mulched rate, leading to a relatively higher grain yield under the HM model.  Mulching increased WUE, a trend that was more obvious under HM9.0 treatment.  Warming effect of soil temperature under the HM pattern persisted longer than under the FM model with the same mulching rates.  Accumulated soil temperature under mulched treatments increased, and the period of negative soil temperature decreased by 9–12 days under FM and by 10–20 days under HM.  Thus, the HM pattern with 9.0 t ha–1 mulching rate is beneficial for both soil temperature and water content management and can contribute to high yields and high WUE for wheat production in China. 
 
Reference | Related Articles | Metrics
Prevalence and characteristics of extended spectrum β-lactamaseproducing Escherichia coli from bovine mastitis cases in China
YANG Feng, ZHANG Shi-dong, SHANG Xiao-fei, WANG Xu-rong, WANG Ling, YAN Zuo-ting, LI Hong-sheng
2018, 17 (06): 1246-1251.   DOI: 10.1016/S2095-3119(17)61830-6
Abstract524)      PDF in ScienceDirect      
The aim of the study was to investigate the prevalence and characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis cases in China.  ChromID ESBL agar was used to confirm ESBL-producing E. coli.  PCR and DNA sequencing were employed to characterize the genotype of ESBL-producers.  Antimicrobial susceptibility was measured by disc diffusion.  Overall, 73 of 318 E. coli isolates (22.96%) were identified as ESBL-producers.  Of these ESBL-producing E. coli, the prevalence of blaCTX-M and blaTEM-1 was 97.26 and 71.23%, respectively.  The predominant CTX-M-type ESBL was CTX-M-15 (65.75%), followed by CTX-M-14 (10.96%), CTX-M-55 (9.59%), CTX-M-64 (5.48%), CTX-M-65 (4.11%) and CTX-M-3 (1.37%).  This study is the first report of CTX-M-64 and CTX-M-65 in E. coli isolated from bovine mastitis.  Furthermore, 72 ESBL-producing E. coli isolates (98.63%) were found to be multidrug-resistance.  This study noted high prevalence and rates of antimicrobial resistance of ESBL-producing E. coli isolates from bovine mastitis cases in China.
Reference | Related Articles | Metrics
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu
2018, 17 (04): 747-754.   DOI: 10.1016/S2095-3119(17)61789-1
Abstract1054)      PDF in ScienceDirect      
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants.  The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips.  Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2.  Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles.  Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Reference | Related Articles | Metrics
Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system
YONG Tai-wen, CHEN Ping, DONG Qian, DU Qing, YANG Feng, WANG Xiao-chun, LIU Wei-guo, YANG Wen-yu
2018, 17 (03): 664-676.   DOI: 10.1016/S2095-3119(17)61836-7
Abstract779)      PDF in ScienceDirect      
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems.  Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China.  To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS).  Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha–1), and CN (conventional N application: 330 kg N ha–1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated.  At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant–1 and 0.14 mL h–1 plant–1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively.  The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3.  The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha–1, 28.5%, and 5.7 kg grain kg–1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively.  The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively.  Those results suggested that LN with distances of 15–30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping.  Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.
Reference | Related Articles | Metrics
Penicillin-resistant characterization of Staphylococcus aureus isolated from bovine mastitis in Gansu, China
YANG Feng, LIU Long-hai, WANG Ling, WANG Xu-rong, LI Xin-pu, LUO Jin-yin, ZHANG Zhe, ZHANG Shi-dong, YAN Zuo-ting, LI Hong-sheng
2017, 16 (08): 1874-1878.   DOI: 10.1016/S2095-3119(16)61531-9
Abstract1414)      PDF in ScienceDirect      
    Bovine mastitis caused by Staphylococcus aureus is difficult to treat because of increasing resistance against antibiotics, especially penicillin. β-Lactamase and biofilm are responsible for penicillin resistance of S. aureus. The aim of this study was to investigate the β-lactamase activity and biofilm formation capacity of 37 penicillin-resistant S. aureus strains (35 were blaZ positive and 2 were blaZ negative) from bovine mastitis in Gansu Province, China, as well as to measure the intercellular adhesion genes icaA and icaD of these strains. β-Lactamase Test Kit was used to determine the β-lactamase activity, biofilm formation was tested by semi-quantitative adherence assay method. Moreover, the presence of icaA and icaD were measured by PCR. A total of 32 penicillin-resistant S. aureus strains, including the two blaZ-negative strains, were identified as β-lactamase producers. All tested S. aureus isolates produced biofilm in the microtiter plate assay. Meanwhile, all these strains were PCR-positive for the ica locus, icaA and icaD. The study indicated high prevalence of β-lactamase activity, biofilm-forming capacity, and the ica genes among the penicillin-resistant S. aureus isolates, and implied that S. aureus resistant to penicillin was attributed to multiple mechanisms.
Reference | Related Articles | Metrics
Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems
WU Yu-shan, YANG Feng, GONG Wan-zhuo, Shoaib Ahmed, FAN Yuan-fang, WU Xiao-ling, YONG Tai-wen, LIU Wei-guo, SHU Kai, LIU Jiang, DU Jun-bo, YANG Wen-yu
2017, 16 (06): 1331-1340.   DOI: 10.1016/S2095-3119(16)61525-3
Abstract917)      PDF in ScienceDirect      
Soybean is one of the major oil seed crops, which is usually intercropped with other crops to increase soybean production area and yield.  However, soybean is highly sensitive to shading.  It is unclear if soybean morphology responds to shading (i.e., shade tolerance or avoidance) and which features may be suitable as screening materials in relay strip intercropping.  Therefore, in this study, various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.  The soybean materials used in this study exhibited genetic diversity, and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08% during the shade period and from 6.44 to 52.49% during the maturity period.  The ratios of shading to full irradiance in stem mass fraction (SMF) were almost greater than 1, whereas opposite results were found in the leaves.  Compared with full irradiance, the average stem length (SL), leaf area ratio (LAR) and specific leaf area (SLA) for the two years (2013 and 2014) increased by 0.78, 0.47 and 0.65 under shady conditions, respectively.  However, the stem diameter (SD), total biomass (TB), leaf area (LA), number of nodes (NN) on the main stem, and number of branches (BN) all decreased.  During the shady period, the SL and SMF exhibited a significant negative correlation with yield, and the SD exhibited a significant positive correlation with yield.  The correlation between the soybean yield and agronomic parameters during the mature period, except for SL, the first pod height (FPH), 100-seed weight (100-SW), and reproductive growth period (RGP), were significant (P<0.01), especially for seed weight per branch (SWB), pods per plant (PP), BN, and vegetative growth period (VGP).  These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.  
Reference | Related Articles | Metrics
Imazamox microbial degradation by common clinical bacteria: Acinetobacter baumannii IB5 isolated from black soil in China shows high potency
LIU Chun-guang, YANG Xin, LAI Yang, LU Hong-gang, ZENG Wei-min, GENG Gui, YANG Feng-shan
2016, 15 (8): 1798-1807.   DOI: 10.1016/S2095-3119(16)61344-8
Abstract1555)      PDF in ScienceDirect      
  Herbicidal residues of imazamox are hazardous to some sensitive rotational aftercrops. The aim of the study was to isolate and identify a microbial strain capable of degrading imazamox. The strain IB5, capable of efficiently degrading imazamox, was isolated from an imazamox-contaminated soybean field in Heilongjiang Province, China. It was found to degrade 98.61% of 400 mg L–1 imazamox within 48 h by high-performance liquid chromatograph. Through morphological, physiological and biochemical characterization, and the 16S rDNA sequencing, the strain was identified as Acinetobacter baumannii. An optimal degradation condition was obtained and verified: 400 mg L–1 imazamox, 0.1% (volume ratio) initial inoculum, 37°C and pH 7.0. Four main products were captured in the liquid chromatograms and mass spectra, and a pathway for imazamox degradation by IB5 was proposed. This work provides a new suitable candidate for imazamox biodegradation and theoretical evidence for imazamox residue bioremediation. A. baumannii is a common clinical bacteria, but its imazamox-degrading feature has not been reported previously.
Reference | Related Articles | Metrics
Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China
YANG Feng, WANG Qi, WANG Xu-rong, WANG Ling, LI Xin-pu, LUO Jin-yin, ZHANG Shi-dong, LI Hong-sheng
2016, 15 (12): 2842-2847.   DOI: 10.1016/S2095-3119(16)61368-0
Abstract1119)      PDF in ScienceDirect      
    Staphylococcus aureus is the most common etiological pathogen of bovine mastitis. The resistant strains make the disease difficult to cure. The aim of this study was to characterize the genetic nature of the antimicrobial resistance in S. aureus cultured from bovine mastitis in Northwest China in 2014. A total of 44 S. aureus were isolated for antimicrobial resistance and resistance-related genes. Antimicrobial resistance was determined by disc diffusion and the corresponding resistance genes were detected by PCR. Phenotype indicated that S. aureus isolates were resistant to penicillin (84.09%), erythromycin (20.45%), tetracycline (15.91%), gentamicin (9.09%), tobramycin (6.82%), kanamycin (6.82%) and methicillin (2.27%). 9.09% of the S. aureus isolates were classified as multidrug resistant. In addition, genotypes showed that the isolates were resistant to rifampicin (100%, rpoB), penicillin (95.45%, blaZ), tetracycline (22.73%, tetK, tetM, alone or in combination), erythromycin (22.73%, ermB or ermC), gentamicin/tobramycin/kanamycin (2.27%, aacA-aphD), methicillin (2.27%, mecA) and vancomycin (2.27%, vanA). Resistance to tetracycline was attributed to the genes tetK and tetM (r=0.558, P<0.001). This study noted high-level geno- and phenotypic antimicrobial resistance in S. aureus isolates from bovine mastitis cases in Northwest China.
Reference | Related Articles | Metrics
A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603
PAN Yu, CHEN Xu-qing, XIE Hua, DENG Lei, LI Xiang-long, ZHANG Xiao-dong, HAN Li-xin, YANG Feng-ping, XUE Jing, ZHANG Li-quan
2015, 14 (10): 1949-1957.   DOI: 10.1016/S2095-3119(15)61130-3
Abstract1205)      PDF in ScienceDirect      
The bsd-pg (bundle sheath defective pale green) mutant is a novel maize mutation, controlled by a single recessive gene, which was isolated from offspring of maize plantlets regenerated from tissue callus of the maize inbred line 501. The characterization was that the biogenesis and development of the chloroplasts was mainly interfered in bundle sheath cells rather than in mesophyll cells. For mapping the bsd-pg, an F2 population was derived from a cross between the mutant bsd-pg and an inbred line Xianzao 17. Using specific locus amplified fragment sequencing (SLAF-Seq) technology, a total of 5 783 polymorphic SLAFs were analysed with 1 771 homozygous alleles between maternal and paternal parents. There were 49 SLAFs, which had a ratio of paternal to maternal alleles of 2:1 in bulked normal lines, and three trait-related candidate regions were obtained on chromosome 1 with a size of 3.945 Mb. For the fine mapping, new simple sequence repeats (SSRs) markers were designed by utilizing information of the B73 genome and the candidate regions were localized a size of 850 934 bp on chromosome 1 between umc1603 and umc1395, including 35 candidate genes. These results provide a foundation for the cloning of bsd-pg by map-based strategy, which is essential for revealing the functional differentiation and coordination of the two cell types, and helps to elucidate a comprehensive understanding of the C4 photosynthesis pathway and related processes in maize leaves.
Reference | Related Articles | Metrics
Exogenous Hydrogen Sulfide Enhanced Antioxidant Capacity, Amylase Activities and Salt Tolerance of Cucumber Hypocotyls and Radicles
YU Li-xu, ZHANG Cun-jia, SHANG Hong-qin, WANG Xiu-feng, WEI Min, YANG Feng-juan , SHIQing-hua
2013, 12 (3): 445-456.   DOI: 10.1016/S2095-3119(13)60245-2
Abstract1652)      PDF in ScienceDirect      
In the present experiment, effects of sodium hydrosulfide (NaHS), a H2S donor, on the oxidative damage, antioxidant capacity and the growth of cucumber hypocotyls and radicles were studied under 100 mmol L-1 NaCl stress. NaCl treatment significantly induced accumulation of H2O2 and thiobarbituric acid-reactive substances (TBARS) in cucumber hypocotyls and radicles, and application of NaHS dramatically reduced the accumulation of H2O2 and lipid peroxidation. However, the alleviating effects greatly depended on the concentrations of NaHS, and 400 μmol L-1 NaHS treatment showed the most significant effects. Corresponding to the change of lipid peroxidation, higher activities of antioxidant enzymes as well as the antioxidant capacity indicated as DPPH scavenging activity, chelating activity of ferrous ions and hydroxyl radical (·OH) scavenging activity were induced by NaHS treatment under NaCl stress, especially by 400 μmol L-1 NaHS treatment. With the alleviating lipid peroxidation, the amylase activities in cotyledons were increased, and the length of cucumber hypocotyls and radicles were significantly promoted by NaHS treatment under NaCl stress. Unlike the effects of NaHS, pretreatment with other sodium salts including Na2S, Na2SO4, NaHSO4, Na2SO3, NaHSO3 and NaAc did not show significant effects on the growth of cucumber hypocotyls and radicles. These salts do not release H2S. Based on above results, it can be concluded that the effects of NaHS in the experiment depended on the H2S rather than other compounds derived from NaHS, and the alleviating effects might related with its function in modulating antioxidant capacity and amylase activities.
Reference | Related Articles | Metrics
Identification, Genetic Analysis and Mapping of Resistance to Phytophthora sojae of Pm28 in Soybean
WU Xiao-ling, ZHANG Bao-qiang, SUN Shi, ZHAO Jin-ming, YANG Feng, GUO Na, GAI Jun-yi, XING Han
2011, 10 (10): 1506-1511.   DOI: 10.1016/S1671-2927(11)60145-4
Abstract2145)      PDF in ScienceDirect      
Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).
Reference | Related Articles | Metrics
The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularis
Xiaolin Liu, Jie Zhu, Ruixiang Li, Yang Feng, Qian Yao, Dong Duan
DOI: 10.1016/j.jia.2025.02.035 Online: 21 February 2025
Abstract15)      PDF in ScienceDirect      

Stilbenes, natural plant phytoalexin, are involved in the response of various biotic and abiotic stresses in plant environment. STILBENE SYNTHASE (STS) is the key enzyme regulating resveratrol synthesis in grapevine. However, the regulatory mechanism of STS genes expression remains unclear. In this study, we reported a NAC transcription factor, VqNAC17, in Vitis quinquangularis, which can improve plant resistance to salt stress, drought stress and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in transgenic Arabidopsis thaliana. Besides, the interaction between the transcription factor VqNAC17 and VqMYB15 was confirmed using yeast two-hybrid and BiFC. In transgenic A. thaliana, VqNAC17 participates in plant immunity through interaction with VqMYB15 to affect the stilbene synthesis. Furthermore, the experimental results of yeast one-hybrid assay and LUC transient expression assay found that VqNAC17 can also bind to the promoter of VqMYB15. These results indicate that VqNAC17 is a key regulator that can promote the expression of STS by interacting with VqMYB15.

Reference | Related Articles | Metrics