Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance (Sr) genes and 69 wheat cultivars to three new Pgt races (34C0MRGQM, 34C3MKGQM, and 34C6MTGSM) identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp, and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20, Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races. Seedling infection types (ITs) and adult-plant infection responses (IRs) indicated that 41 (59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24, Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races.
Toxicity and horizontal transfer of bifenthrin and dimefluthrin against the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and the efficacy of their dust applications in the field
The red imported fire ant, Solenopsis invicta Buren, poses a significant threat to biodiversity, agriculture, and public health in its introduced ranges. While chemicals such as toxic baits and dust are the main methods for S. invicta control, toxic baits are slow, requiring approximately one or two weeks, but dust can eliminate the colony of fire ants rapidly in just three to five days. To explore more active ingredients for fire ant control using dusts, the toxicity of bifenthrin and dimefluthrin, the horizontal transfer of bifenthrin and dimefluthrin dust and their efficacy in the field were tested. The results showed that the LD50 (lethal dose) values of bifenthrin and dimefluthrin were 3.40 and 1.57 ng/ant, respectively. The KT50 (median knockdown time) and KT95 (95% knockdown time) values of a 20 μg mL–1 bifenthrin dose were 7.179 and 16.611 min, respectively. The KT50 and KT95 of a 5 μg mL–1 dimefluthrin dose were 1.538 and 2.825 min, respectively. The horizontal transfers of bifenthrin and dimefluthrin among workers were effective. The mortality of recipients (secondary mortality) and secondary recipients (tertiary mortality) were both over 80% at 48 h after 0.25, 0.50 and 1.00% bifenthrin dust treatments. The secondary mortality of recipients was over 99% at 48 h after 0.25, 0.50 and 1.00% dimefluthrin dust treatments, but the tertiary mortality was below 20%. The field trial results showed that both bifenthrin and dimefluthrin exhibited excellent fire ant control effects, and the comprehensive control effects of 1.00% bifenthrin and dimefluthrin dusts at 14 d post-treatment were 95.87 and 85.70%, respectively.
Passion fruit (Passiflora edulis Sims) is a vine of the Passiflora genus in the Passifloraceae family. The extracted components include flavonoids and terpenoids, which have good anti-anxiety and anti-inflammatory effects in humans. In this study, we analyzed the transcriptomes of four tissues of the ‘Zixiang’ cultivar using RNA-Seq, which provided a dataset for functional gene mining. The de novo assembly of these reads generated 96 883 unigenes, among which 61 022 unigenes were annotated (62.99% yield). In addition to its edible value, another important application of passion fruit is its medicinal value. The flavonoids and terpenoids are mainly derivatives of luteolin, apigenin, cycloartane triterpenoid saponins and other active substances in leaf extracts. A series of candidate unigenes in the transcriptome data that are potentially involved in the flavonoid and terpenoid synthesis pathways were screened using homology-based BLAST and phylogenetic analysis. The results showed that the biosynthesis of triterpenoids in passion fruit comes from the branches of the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathways, which is different from the MVA pathway that is used in other fruit trees. Most of the candidate genes were found to be highly expressed in the leaves and/or flowers. Quantitative real-time PCR (qRT-PCR) verification was carried out and confirmed the reliability of the RNA-Seq data. Further amplification and functional analysis of these putative unigenes will provide additional insight into the biosynthesis of flavonoids and terpenoids in passion fruit.