Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1465-1476    DOI: 10.1016/j.jia.2022.12.010
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Toxicity and horizontal transfer of bifenthrin and dimefluthrin against the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and the efficacy of their dust applications in the field

LIANG Ming-rong1*, SHUANG You-ming2*, DENG Jie-fu1, PENG Li-ya2, ZHANG Sen-quan2, ZHANG Chen2, XU Yi-juan1, LU Yong-yue1, WANG Lei1#

1 Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, P.R.China

2 Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen Administration for Market Regulation, Shenzhen 518057, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

红火蚁Solenopsis invicta是一种严重威胁入侵地生物多样性、农林业生产和公共安全的危险性害虫。目前,红火蚁的防治药剂主要分为毒饵和触杀性粉剂两种类型。毒饵对红火蚁的防控效果虽然较彻底,但是见效慢,一般2周左右才能达到理想的防效。触杀性粉剂见效快,施药后3-5天即可达到理想效果,适合应用于红火蚁的紧急扑灭。为筛选出更多可用作触杀性粉剂的有效成分,本文开展了联苯菊酯和四氟甲醚菊酯对红火蚁的毒力、水平传递毒性及其触杀性粉剂的田间防效研究。研究显示,联苯菊酯和四氟甲醚菊酯对红火蚁工蚁的致死中量LD50分别为3.40 ng/头和1.57 ng/头。20 μg mL-1联苯菊酯对红火蚁工蚁的击倒中时KT5095%击倒时间KT95分别为7.179 min和16.611 min。20 μg mL-1四氟甲醚菊酯对红火蚁工蚁的击倒中时KT5095%击倒时间KT95分别为1.538 min和2.825 min联苯菊酯触杀性粉剂和四氟甲醚菊酯触杀性粉剂在蚁群间具有良好的水平传递毒性。0.25、0.50 和1.00% 联苯菊酯触杀性粉剂处理48小时后,第一次继发传递毒性的受药蚁的死亡率(二级死亡率)和第二次继发传递毒性的受药蚁的死亡率(三级死亡率)均超过了80%。0.25、0.50 和1.00% 四氟甲醚菊酯触杀性粉剂处理48小时后,第一次继发传递毒性的受药蚁的死亡率超过了99%,但是第二次继发传递毒性的受药蚁的死亡率则低于20%。野外结果显示,1.00%联苯菊酯触杀性粉剂和1.00%四氟甲醚菊酯触杀性粉剂处理14天后,对红火蚁蚁群的综合防效分别为95.87%85.70%,防治效果较好。


The red imported fire ant, Solenopsis invicta Buren, poses a significant threat to biodiversity, agriculture, and public health in its introduced ranges.  While chemicals such as toxic baits and dust are the main methods for Sinvicta control, toxic baits are slow, requiring approximately one or two weeks, but dust can eliminate the colony of fire ants rapidly in just three to five days.  To explore more active ingredients for fire ant control using dusts, the toxicity of bifenthrin and dimefluthrin, the horizontal transfer of bifenthrin and dimefluthrin dust and their efficacy in the field were tested.  The results showed that the LD50 (lethal dose) values of bifenthrin and dimefluthrin were 3.40 and 1.57 ng/ant, respectively.  The KT50 (median knockdown time) and KT95 (95% knockdown time) values of a 20 μg mL–1 bifenthrin dose were 7.179 and 16.611 min, respectively.  The KT50 and KT95 of a 5 μg mL–1 dimefluthrin dose were 1.538 and 2.825 min, respectively.  The horizontal transfers of bifenthrin and dimefluthrin among workers were effective.  The mortality of recipients (secondary mortality) and secondary recipients (tertiary mortality) were both over 80% at 48 h after 0.25, 0.50 and 1.00% bifenthrin dust treatments.  The secondary mortality of recipients was over 99% at 48 h after 0.25, 0.50 and 1.00% dimefluthrin dust treatments, but the tertiary mortality was below 20%.  The field trial results showed that both bifenthrin and dimefluthrin exhibited excellent fire ant control effects, and the comprehensive control effects of 1.00% bifenthrin and dimefluthrin dusts at 14 d post-treatment were 95.87 and 85.70%, respectively.

Keywords:  red imported fire ant       pyrethroids       secondary transfer        tertiary mortality        contact toxic dust  
Received: 31 May 2022   Accepted: 04 November 2022

This study is supported by the Special Project for Sustainable Development Science and Technology of Shenzhen, China (2021N007), and the Special Project for Red Imported Fire Ant Management, Shenzhen Agricultural Science and Technology Promotion Center, China (20220900044zbzjbc).

About author:  LIANG Ming-rong, E-mail:; SHUANG You-ming, E-mail:; #Correspondence WANG Lei, Mobile: +86-13265045424, E-mail: * These authors contributed equally to this study.

Cite this article: 

LIANG Ming-rong, SHUANG You-ming, DENG Jie-fu, PENG Li-ya, ZHANG Sen-quan, ZHANG Chen, XU Yi-juan, LU Yong-yue, WANG Lei. 2023.

Toxicity and horizontal transfer of bifenthrin and dimefluthrin against the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and the efficacy of their dust applications in the field . Journal of Integrative Agriculture, 22(5): 1465-1476.

Buczkowski G. 2019. Trap-treat-release: horizontal transfer of fipronil in field colonies of black carpenter ants, Camponotus pennsylvanicus. Pest Management Science, 75, 2195–2201.
Buczkowski G, Wossler T C. 2019. Controlling invasive Argentine ants, Linepithema humile, in conservation areas using horizontal insecticide transfer. Scientific Reports, 9, 19495.
Cassill D L, Tschinkel W R. 1999. Regulation of diet in the fire ant, Solenopsis invicta. Journal of Insect Behavior, 12, 307–328. 
Chen J, Oi D H. 2020. Naturally occurring compounds/materials as alternatives to synthetic chemical insecticides for use in fire ant management. Insects, 11, 758.
Choe D H, Rust M K. 2008. Horizontal transfer of insecticides in laboratory colonies of the Argentine ant (Hymenoptera: Formicidae). Journal of Economic Entomology, 101, 1397–1405.
Drees B M, Frisbie R. 2002. Overview of the Texas imported fire ant research and management project. Southwestern Entomologist, 25, 1–5.
Drees B M, Gold R E. 2003. Development of integrated pest management programs for the red imported fire ant (Hymenoptera: Formicidae). Journal of Entomological Science, 38, 170–180.
GB/T 17980.149-2009. 2009. Pesticide guidelines for the field efficacy trials (2) - Part 149: Insecticides against Solenopsis invicta Buren. Standardization Administration of China (in Chinese)
Hu S. 2008. The damage risk and loss assessment of adventive organism red fire ant, Solenopsis invicta Buren, in Fujian. MSc thesis, Fujian Agricultural and Forestry University, Fuzhou, China. (in Chinese)
Kafle L, Wu W J, Shih C J. 2010. A new fire ant (Hymenoptera: Formicidae) bait base carrier for moist conditions. Pest Management Science, 66, 1082–1088.
Klotz J H, Greenberg L, Storey H H, Williams D F. 1997. Alternative control strategies for ants around homes. Journal of Agricultural Entomology, 14, 249–257
Lu Y Y, Zeng L, Xu Y J, Liang G W, Wang L. 2019. Research progress of invasion biology and management of red imported fire ant. Journal of South China Agricultural University, 40, 149–160. (in Chinese)
Matsuo N, Mori T. 2012. Pyrethroids: From Chrysanthemum to Modern Industrial Insecticide. Springer, Berlin Heidelberg. pp. 314.
MARAPRC (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). 2021. List of national administrative regions for the distribution of agricultural plant quarantine pests. [2022-03-18]. (in Chinese)
Ning D D, Yang F, Xiao Q, Ran H, Xu Y J. 2019. A simple and efficient method for preventing ant escape (Hymenoptera: Formicidae). Myrmecological News, 29, 57–65.
Oi D H, Williams D F. 1996. Toxicity and repellency of potting soil treated with bifenthrin and tefluthrin to red imported fire ants (Hymenoptera: Formicidae). Journal of Economic Entomology, 89, 1526–1530.
Pranschke A M. 2003. Efficacy of bifenthrin treatment zones against red imported fire ant. Journal of Economic Entomology, 96, 98–105.
Qin W, Chen X, Hooper-Bùi LM, Cai J, Wang L, Sun Z, Wen X, Wang C. 2019. Food-burying behavior in red imported fire ants (Hymenoptera: Formicidae). PeerJ, 7, e6349.
Stringer C E J, Lofgren C S, Bartlett F J. 1964. Imported fire ant toxic bait studies: evaluation of toxicants. Journal of Economic Entomology, 57, 941–945.
Sun Q, Haynes K, Zhou X. 2016. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Functional Ecology, 31, 697–706.
Tan D L, Lu Y Y, Li X, Zeng L, Xu Y J. 2014. Control efficiency of lambda-cyhalothrin and thiamethoxam against the red imported fire ant (Hymenoptera: Formicidae). Journal of Biosafety, 23, 121–125. (in Chinese)
Tian W J, Zhuang T Y, Wang C X, Liang M F. 2010. A report on the field control efficacy of Derris hancei root powder mixture against the red imported fire ant. Journal of Environmental Entomology, 32, 415–418. (in Chinese)
Tschinkel W R. 1993. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecological Monographs, 63, 425–457.
Verza S S, Diniz E A, Chiarelli M F, Mussury R M, Bueno O C. 2017. Waste of leaf-cutting ants: disposal, nest structure, and abiotic soil factors around internal waste chambers. Acta Ethologica, 20, 119–126. (in Chinese)
Vinson S B. 2013. Impact of the invasion of the imported fire ant: Impact of the IFA. Insect Science, 20, 439–455.
Vinson S B, MacKay W P. 1990. Effects of the Fire Ant, Solenopsis Invicta, on Electrical Circuits And Equipment. Westview Press, Boulder. pp. 496–503.
Vogt J T, Shelton T G, Merchant M E, Russell S A, Tanley M J, Appel A G. 2002. Efficacy of three citrus oil formulations against solenopsis invicta buren (Hymenoptera: Formicidae), the red imported fire ant. Journal of Agricultural & Urban Entomology, 19, 159–171.
Wang L, Chen J. 2015. Fatty amines from little black ants, Monomorium minimum, and their biological activities against red imported fire ants, Solenopsis invicta. Journal of Chemical Ecology, 41, 708–715.
Wang L, Zeng L, Xu Y J, Lu Y Y. 2020a. Prevalence and management of Solenopsis invicta in China. NeoBiota, 54, 89–124.
Wang L, Zhao F, Tao Q, Li J, Xu Y J, Li Z Q, Lu Y Y. 2020b. Toxicity and sublethal effect of triflumezopyrim against red imported fire ant (Hymenoptera: Formicidae). Journal of Economic Entomology, 113, 1753–1760.
Wang L, Xu Y J, Zeng L, Lu Y Y. 2019. Impact of the red imported fire ant Solenopsis invicta Buren on biodiversity in South China: A review. Journal of Integrative Agriculture, 18, 788–796.
Wen C, Chen J, Qin W, Chen X, Cai J, Wen J, Wen X, Wang C. 2021. Red imported fire ants (Hymenoptera: Formicidae) cover inaccessible surfaces with particles to facilitate food search and transportation. Insect Science, 28, 1816–1828.
Wiltz B A, Suiter D R, Gardner W A. 2010. Activity of bifenthrin, chlorfenapyr, fipronil, and thiamethoxam against red imported fire ants (Hymenoptera: Formicidae). Journal of Economic Entomology, 103, 754–761.
Xu Y J, Vargo E L, Tsuji K, Wylie R. 2022. Exotic ants of the Asia-Pacific: Invasion, national response, and ongoing needs. Annual Review of Entomology, 67, 27–42.
Yasudai R, Matsubara A, Hsu P W, Lee C C, Lin C C, Yang C C S. 2022. Laboratory and field evaluations of two bait formulations against the invasive fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Journal of Economic Entomology, 115, 624–630.
Yuan L, Yang X, Yu X, Wu Y, Jiang D. 2019. Resistance to insecticides and synergistic and antagonistic effects of essential oils on dimefluthrin toxicity in a field population of Culex quinquefasciatus Say. Ecotoxicology and Environmental Safety, 169, 928–936.
Zhang L, Wang L, Chen J, Zhang J, He Y, Lu Y, Cai J, Chen X, Wen X, Xu Z, Wang C. 2022. Toxicity, horizontal transfer, and physiological and behavioral effects of cycloxaprid against Solenopsis invicta (Hymenoptera: Formicidae). Pest Management Science, 78, 2228–2239.
Zheng H J, Liang Q, Cao Y H, Zhang R J. 2010. Control the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) with β-cypemethrin 4.5%EC. Agrochemicals, 49, 373–374, 377. (in Chinese)
Zhuang T Y, Tian W J, Chen S P, Wang C X, Zhuo G H, Yuan Y Q, Cai L L, Liang M F. 2008. Efficacy of fipronil powder in controlling red imported fire ant in winter. China Plant Protection, 10, 36–38. (in Chinese)
[1] LI Hai-ping, CHANG Jing, FENG Tao, GAO Xi-wu. Differential effects of insecticides on mitochondrial membrane fluidity and ATPase activity between the wolf spider and the rice stem borer[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2574-2580.
No Suggested Reading articles found!