Soft rot caused by Pectobacterium carotovorum (Pc) is a devastating disease of Brassica rapa, causing substantial reductions in crop yield and quality. Identifying genes related to soft rot resistance is the key to solving this problem. To characterize soft rot resistance, we screened a soft rot-susceptible Chinese cabbage (A03), a resistant pakchoi (‘Huaguan’), and a resistant mutant (sr). An F2 population was generated by crossing susceptible Chinese cabbage A03 and resistant pakchoi ‘Huaguan’ to identify quantitative trait loci (QTLs) that confer soft rot resistance. A high-density genetic map was constructed and the three QTLs identified contain 166 genes. Based on available transcriptome data, we analyzed the expression of the 166 genes during an important defense regulatory period in Pc infection in both A03 and the resistant mutant sr. Among the 166 genes, six candidate genes were related to the soft rot defense response in B. rapa. TIFY10B (JAZ2, BraA07g038660.3C) was located in the major soft rot resistance QTL, DRQTL-3 on A07, and we speculate that this gene may play an important role in the defense mechanism against soft rot in B. rapa. This study lays the foundation for further investigations on the mechanism of soft rot resistance in B. rapa crops.
Wheat flour products are the main dietary component of the Qinghai–Tibetan Plateau (QTP) population in China. However, the high altitude restricts the local wheat quality and quantity, and the applied nitrogen rate is higher than the optimal rate for wheat planting. In this study, we considered whether reducing the amount of nitrogen fertilizer and introducing the superior varieties from the North China Plain (NCP) are viable ways to increase the wheat quality and quantity in the QTP. Three and four winter wheat cultivars from QTP and NCP, respectively, were planted in Lhasa at an altitude of 3 647 m with reduced topdressing nitrogen application at the jointing stage. The wheat from NCP exhibited higher grain hardness index and test weight, and better flour and dough quality. Reducing the topdressing nitrogen fertilizer from 135 to 75 kg N ha−1 at the jointing stage (with the same basal fertilization of 105 kg N ha−1) did not significantly (P<0.05) affect the grain yield, grain quality, flour quality or dough quality in any of the cultivars. In summary, introducing high-quality winter wheat varieties from the NCP to the Lhasa plateau is a viable way to enhance the wheat supply and quality in the QTP. Reducing a certain amount of the nitrogen fertilizer is an economic and feasible approach for the QTP region.
Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains (H5-Re11 and H5-Re12) used in China. In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production. The vaccine strain H5-Re13 contains the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N6 virus that bears the clade 2.3.4.4h HA gene, H5-Re14 contains the HA and NA genes of an H5N8 virus that bears the clade 2.3.4.4b HA gene, and H7-Re4 contains the HA and NA genes of H7N9 virus detected in 2021. We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese. The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested. Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses (an H5N1 virus, an H5N6 virus, and an H5N8 virus) bearing the clade 2.3.4.4b HA gene, an H5N6 virus bearing the clade 2.3.4.4h HA gene, and an H7N9 virus. All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses. Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4h or 2.3.4.4b HA gene was observed in ducks and geese. Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7N9 viruses that are currently circulating in nature.
Diamide derivatives are biologically active molecules that have been widely applied in recent years in research on pesticides, especially insecticides. Using a simple and environmentally friendly scheme, a series of new diamide derivatives containing a trifluoromethylpyridine skeleton was designed, synthesized, and confirmed by 1H, 19F and 13C NMR, and HR-MS. Their insecticidal activities against Plutella xylostella and Helicoverpa armigera were measured and the relationship between structure and activity was investigated. Eight of the title compounds (D2, D5, D10, D21, D28, D29, D30 and D33) showed 100% activity against P. xylostella at 500 mg L–1. One compound, D33, still showed 100% activity against P. xylostella at 100 mg L–1 and had the lowest LC50 (lethal concentration 50%, 3.7 mg L–1) among the synthesized compounds. Molecular docking analysis revealed that D33 could be thoroughly embedded in the active pocket of the ryanodine receptor via hydrogen bonding in a manner similar to the commercial insecticide chlorantraniliprole.