Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Immunogenetic basis of chicken’s heterophil to lymphocyte ratio revealed by genome-wide indel variants analysis
ZHANG Jin, WANG Jie, WANG Qiao, CUI Huan-xian, DING Ji-qiang, WANG Zi-xuan, Mamadou Thiam, LI Qing-he, ZHAO Gui-ping
2023, 22 (9): 2810-2823.   DOI: 10.1016/j.jia.2022.12.012
Abstract145)      PDF in ScienceDirect      

Enhancing host immunity is an effective way to reduce morbidity in chickens.  Heterophil to lymphocyte ratio (H/L) is associated with host disease resistance in birds.  Chickens with different H/L levels show different disease resistances.  However, the utility of the H/L as an indicator of immune function needs to be further analyzed.  In this study, a H/L directional breeding chicken line (Jingxing yellow chicken) was constructed, which has been bred for 12 generations.  We compared the function of heterophils, and combined statistical analysis to explore the candidate genes and pathways related to H/L.  The oxidative burst function of the heterophils isolated from the H/L selection line (G12) was increased (P=0.044) compared to the non-selection line (NS).  The 22.44 Mb genomic regions which annotated 300 protein-coding genes were selected in the genome of G9 (n=92) compared to NS (n=92) based on a genome-wide selective sweep.  Several selective regions were identified containing genes like interferon induced with helicase C domain 1 (IFIH1) and moesin (MSN) associated with the intracellular receptor signaling pathway, C–C motif chemokine receptor 6 (CCR6), dipeptidyl peptidase 4 (DPP4) and hemolytic complement (HC) associated with the negative regulation of leukocyte chemotaxis and tight junction protein 1 (TJP1) associated with actin cytoskeleton organization.  In addition, 45 genome-wide significant indels containing 29 protein-coding genes were also identified as associated with the H/L based on genome-wide association study (GWAS).  The expression of protein tyrosine phosphatase non-receptor type 5 (PTPN5) (r=0.75, P=0.033) and oxysterol binding protein like 5 (OSBPL5) (r=0.89, P=0.0027) were positively correlated with H/L.  Compared to the high H/L group, the expressions of PTPN5 and OSBPL5 were decreased (P<0.05) in the low H/L group of Beijing you chicken.  The A/A allelic frequency of indel 5_13108985 (P=3.85E–06) within OSBPL5 gradually increased from the NS to G5 and G9, and the individuals with A/A exhibited lower H/L than individuals with heterozygote A/ATCT (P=4.28E–04) and homozygous ATCT/ATCT (P=3.40E–05).  Above results indicated oxidative burst function of heterophils were enhanced, and 22.44 Mb genomic regions were selected with the directional selection of H/L.  In addition, PTPN5 and OSBPL5 genes were identified as H/L-related candidate genes.  These findings revealed the complex genetic mechanism of H/L related to immunity and will allow selection for improving chicken immunity based on the H/L

Reference | Related Articles | Metrics
OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development
CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang
2023, 22 (4): 972-980.   DOI: 10.1016/j.jia.2022.08.026
Abstract333)      PDF in ScienceDirect      

Photosynthesis occurs mainly in chloroplasts, whose development is regulated by proteins encoded by nuclear genes.  Among them, pentapeptide repeat (PPR) proteins participate in organelle RNA editing.  Although there are more than 450 members of the PPR protein family in rice, only a few affect RNA editing in rice chloroplasts.  Gene editing technology has created new rice germplasm and mutants, which could be used for rice breeding and gene function study.  This study evaluated the functions of OsPPR9 in chloroplast RNA editing in rice.  The osppr9 mutants were obtained by CRISPR/Cas9, which showed yellowing leaves and a lethal phenotype, with suppressed expression of genes associated with chloroplast development and accumulation of photosynthetic-related proteins.  In addition, loss of OsPPR9 protein function reduces the editing efficiency of rps8-C182, rpoC2-C4106, rps14-C80, and ndhB-C611 RNA editing sites, which affects chloroplast growth and development in rice.  Our data showed that OsPPR9 is highly expressed in rice leaves and encodes a DYW-PPR protein localized in chloroplasts.  Besides, the OsPPR9 protein was shown to interact with OsMORF2 and OsMORF9.  Together, our findings provide insights into the role of the PPR protein in regulating chloroplast development in rice. 

Reference | Related Articles | Metrics
The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears
WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun
2023, 22 (11): 3256-3268.   DOI: 10.1016/j.jia.2023.07.017
Abstract204)      PDF in ScienceDirect      

The red coloring of pear fruits is mainly caused by anthocyanin accumulation.  Red sport, represented by the green pear cultivar ‘Bartlett’ (BL) and the red-skinned derivative ‘Max Red Bartlett’ (MRB), is an ideal material for studying the molecular mechanism of anthocyanin accumulation in pear.  Genetic analysis has previously revealed a quantitative trait locus (QTL) associated with red skin color in MRB.  However, the key gene in the QTL and the associated regulatory mechanism remain unknown.  In the present study, transcriptomic and methylomic analyses were performed using pear skin for comparisons between BL and MRB.  These analyses revealed differential PcHY5 DNA methylation levels between the two cultivars; MRB had lower PcHY5 methylation than BL during fruit development, and PcHY5 was more highly expressed in MRB than in BL.  These results indicated that PcHY5 is involved in the variations in skin color between BL and MRB.  We further used dual luciferase assays to verify that PcHY5 activates the promoters of the anthocyanin biosynthesis and transport genes PcUFGT, PcGST, PcMYB10 and PcMYB114, confirming that PcHY5 not only regulates anthocyanin biosynthesis but also anthocyanin transport.  Furthermore, we analyzed a key differentially methylated site between MRB and BL, and found that it was located in an intronic region of PcHY5.  The lower methylation levels in this PcHY5 intron in MRB were associated with red fruit color during development, whereas the higher methylation levels at the same site in BL were associated with green fruit color.  Based on the differential expression and methylation patterns in PcHY5 and gene functional verification, we hypothesize that PcHY5, which is regulated by methylation levels, affects anthocyanin biosynthesis and transport to cause the variations in skin color between BL and MRB.

Reference | Related Articles | Metrics
Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella
WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping
2022, 21 (8): 2372-2383.   DOI: 10.1016/S2095-3119(21)63770-X
Abstract169)      PDF in ScienceDirect      

Salmonella is one of the most common food-borne pathogens and its resistance in chicken can be improved through genetic selection.  The heterophils/lymphocytes (H/L) ratio in the blood reflects the immune system status of chicken.  We compared the genome data and spleen transcriptomes between the H/L ratio-selected and non-selected chickens, after Salmonella infection, aiming to identify the key genes participating in the antibacterial activity in the spleen.  The results revealed that, the selected population had stronger (P<0.05) liver resistance to Salmonella typhimurium (ST) than the non-selected population.  In the selected and non-selected lines, the identified differentiation genes encode proteins involved in biological processes or metabolic pathways that included the TGF-beta signaling pathway, FoxO signaling pathway, and Salmonella infection pathway.  The results of the analysis of all identified differentially expressed genes (DEGs) of spleen revealed that the G protein-coupled receptor (GPCR) and insulin-like growth factor (IGF-I) signaling pathways were involved in the Salmonella infection pathway.  Integrated analysis of DEGs and FST (fixation index), identified candidate genes involved in Salmonella infection pathway, such as GPR39, NTRK2, and ANXA1.  The extensive genomic changes highlight the polygenic genetic of the immune response in these chicken populations.  Numerous genes related to the immune performance are differentially expressed in the selected and non-selected lines and the selected lines has a higher resistance to Salmonella. 

Reference | Related Articles | Metrics
Development of a texture evaluation system for winter jujube (Ziziphus jujuba ‘Dongzao’)
KONG Xia-bing, XU Min, WAN Hao-liang, HAN Ling-xi, LIU Xiao-li, LI Qing-jun, HAO Bian-qing, ZHANG Shao-jun, LI Xiao-ming, LIU Yi-hui, NIE Ji-yun
2022, 21 (12): 3658-3668.   DOI: 10.1016/j.jia.2022.09.007
Abstract262)      PDF in ScienceDirect      

Winter jujube (Ziziphus jujuba ‘Dongzao’) is an excellent late maturing variety of fresh-eating jujube in China.  Fruit texture is an important indicator of sensory quality.  To investigate the correlations among texture indices and establish an evaluation system for winter jujube texture, we used the TMS-Touch instrument to perform a texture profile analysis (TPA) on 1 150 winter jujubes from three major producing areas in China.  Eight indices and their best-fit distribution were obtained, including fracture (Pearson), hardness (InvGauss), adhesive force (Weibull), adhesiveness (LogLogistic), cohesiveness (LogLogistic), springiness (BetaGeneral), gumminess (InvGauss), and chewiness (InvGauss).  Based on the best-fit distribution curves, each index was divided into five grades (lower, low, medium, high and higher) by the 10th, 30th, 70th and 90th percentiles.  Among the texture indices, 82% of the correlation coefficients were highly significant (P<0.01); meanwhile, chewiness was significantly (P<0.01) and positively correlated with springiness and gumminess, of which the correlation coefficients were up to 0.8692 and 0.8096, respectively.  However, adhesiveness was significantly (P<0.01) and negatively related to adhesive force with a correlation coefficient of –0.7569.  Among hardness, cohesiveness, springiness, gumminess, and chewiness, each index could be well fitted by a multiple linear regression with the remaining four indices, with the coefficients above 0.94 and the mean fitting error and mean prediction error lower than 10%.  A comprehensive evaluation model was consequently established based on factor analysis to evaluate the texture quality of winter jujube.  The results demonstrated that winter jujube with higher comprehensive scores generally exhibited higher springiness and chewiness, but had lower adhesive force and adhesiveness.  We used factor analysis and clustering analysis to divide the eight studied texture into four groups (cohesive factor, adhesive-soft factor, tough-hard factor, and crispness factor), whose representative indices were springiness, adhesiveness, hardness, and fracture, respectively.  Overall, this study investigated the variation in each index of winter jujube texture, explored the association among these indices, screened the representative indices, and established a texture evaluation system.  The results provide a methodological basis and technical support for evaluating winter jujube texture.

Reference | Related Articles | Metrics
Seedling and adult plant resistance to leaf rust in 46 Chinese bread wheat landraces and 39 wheat lines with known Lr genes
ZHANG Pei-pei, Takele Weldu Gebrewahid, ZHOU Yue, LI Qing-luo, LI Zai-feng, LIU Da-qun
2019, 18 (5): 1014-1023.   DOI: 10.1016/S2095-3119(19)62575-X
Abstract204)      PDF in ScienceDirect      
Wheat leaf rust, caused by Puccinia triticina (Pt), is an important foliar disease that has an important influence on wheat yield.  The most economic, safe and effective way to control the disease is growing resistant cultivars.  In the present study, a total of 46 wheat landraces and 34 wheat lines with known Lr (leaf rust resistance) genes were inoculated with 16 Pt pathotypes for postulating seedling resistance gene(s) in the greenhouse.  These cultivars and five wheat differential lines with adult plant resistance (APR) genes (Lr12, Lr22b, Lr34, Lr35 and Lr37) were also evaluated for identification of slow rusting resistance in the field trials in Baoding, Hebei Province of China in the 2014–2015 and 2015–2016 cropping seasons.  Furthermore, 10 functional molecular markers closely linked to 10 known Lr genes were used to detect all the wheat genotypes.  Results showed that most of the landraces were susceptible to most of the Pt pathotypes at seedling stage.  Nonetheless, Lr1 was detected only in Hongtangliangmai.  The field experimental test of the two environments showed that 38 landraces showed slow rusting resistance.  Seven cultivars possessed Lr34 but none of the landraces contained Lr37 and Lr46Lr genes namely, Lr9, Lr19, Lr24, Lr28, Lr29, Lr47, Lr51 and Lr53 were effective at the whole plant stage.  Lr18, Lr36 and Lr45 had lost resistance to part of pathotypes at the seedling stage but showed high resistance at the adult plant stage. Lr34 as a slowing rusting gene showed good resistance in the field.  Four race-specific APR genes Lr12, Lr13, Lr35 and Lr37 conferred good resistance in the field experiments.  Seven race-specific genes, Lr2b, Lr2c, Lr11, Lr16, Lr26, Lr33 and LrB had lost resistance.  The 38 landraces showed slow rusting resistance to wheat leaf rust can be used as resistance resources for wheat resistance breeding in China.
Related Articles | Metrics
Molecular, serological and biological characterization of a novel Apple stem pitting virus strain from a local pear variety grown in China
LI Liu, ZHENG Meng-meng, MA Xiao-fang, LI Yuan-jun, LI Qing-yu, WANG Guo-ping, HONG Ni
2019, 18 (11): 2549-2560.   DOI: 10.1016/S2095-3119(19)62636-5
Abstract127)      PDF in ScienceDirect      
Apple stem pitting virus (ASPV) is an important causal agent of pear diseases.  Nowadays, the infection status and molecular characteristics of the virus in old pear trees have never been investigated.  In this study, we provide the first complete genome sequence of an ASPV isolate LYC from an over 300-year-old tree of a local Pyrus bretschneideri cultivar ‘Chili’ specifically grown at Laiyang area in China.  ASPV-LYC possesses a chimeric genome consisting of 9 273 nucleotides excluding a poly(A) tail at its 3´ end and harboring a recombination region in its open reading frame (ORF1) with Aurora-1 and KL9 identified as the major and minor parents.  Western blot analysis with antisera against recombinant coat proteins (CPs) of three ASPV isolates from pear indicates that ASPV-LYC is serologically related to these ASPV isolates, but with differential activities.  Further biological tests on indicator plants of Pyronia veitchii show that ASPV-LYC can induce serious leaf and stem symptoms as other ASPV isolates.  The results provide an important information for understanding molecular evolution of ASPV and suggest a need to prevent dissemination of the isolate among pear trees.
Reference | Related Articles | Metrics
Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat
CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui
2018, 17 (08): 1697-1705.   DOI: 10.1016/S2095-3119(17)61861-6
Abstract436)      PDF in ScienceDirect      
Agropyron cristatum, a wild relative of common wheat (Triticum aestivum L.), provides many desirable genetic resources for wheat improvement, such as tolerance to cold, drought, and disease.  To transfer and utilize these desirable genes, in this study, two wheat-A. cristatum derivatives II-13 and II-23 were identified and analyzed.  We found that the number of root tip cell chromosomes was 44 in both II-13 and II-23, but there were four and six P genome chromosomes in II-13 and II-23, respectively, based on genomic in situ hybridization (GISH).  The chromosome configurations of II-13 and II-23 were both 2n=22II by the meiotic analysis of pollen mother cells (PMCs) at metaphase I, indicating that there were two and three pairs of P chromosomes in II-13 and II-23, respectively.  Notably, wheat chromosome 7D was absent in derivative line II-13 while II-23 lacked chromosomes 4B and 7A based on SSR analysis combining fluorescence in situ hybridization (FISH) analysis with pAs1 and pSc119.2 as probes.  Chromosomes 2P and 7P were detected in both II-13 and II-23.  Another pair of P genome chromosomes in II-23 was determined to be 4P based on expressed-sequences tags-sequence tagged sites (EST-STS) markers specific to A. cristatum and FISH with probes pAcTRT1 and pAcpCR2.  Overall, these results suggest that II-13 was a 7P (7D) substitution line with one pair of additional 2P chromosomes and II-23 was a multiple 4P (4B), 7P (7A) substitution line with one pair of additional 2P chromosomes.  Moreover, we obtained six alien disomic addition lines and five alien disomic substitution lines by backcrossing.  These new materials will allow desirable genes from A. cristatum to be used in common wheat.
 
Reference | Related Articles | Metrics
Immunogenicity and protective efficacy of DHBV DNA vaccines expressing envelope and capsid fusion proteins in ducks delivered by attenuated Salmonella typhimurium
LIU Si-yang, JIA Ren-yong, LI Qing-qing, FENG Dai-shen, SHEN Hao-yue, YANG Cui, WANG Ming-shu, ZHU De-kang, CHEN Shun, LIU Ma-feng, ZHAO Xin-xin, YIN Zhong-qiong, JING Bo, CHENG An-chun
2018, 17 (04): 928-939.   DOI: 10.1016/S2095-3119(17)61829-X
Abstract495)      PDF in ScienceDirect      
Duck hepatitis B virus (DHBV) shares many basic characteristics with hepatitis B virus (HBV) and is an attractive model for vaccine development.  In this study, DHBV DNA vaccines were designed to express envelope and capsid fusion proteins to enhance the breadth of immune response in ducks.  Attenuated Salmonella typhimurium (SL7207) was used as a carrier and adjuvant to boost the magnitude of immune response.  Based on this strategy, novel DNA vaccines (SL7207-pVAX1-LC and SL7207-pVAX1-SC) were generated.  Growth kinetics, genetic stabilities and relative transcription levels of the L, S and C genes introduced by these vaccine strains were measured before inoculation to guarantee safety and efficacy.  The relative transcript levels of the CD4 and CD8 T genes and the antibody levels (IgY) in ducks receiving the vaccines were higher than those in single gene delivered groups.  Additionally, the copy number of covalently closed circular DNA in hepatocytes after DHBV challenge also provided evidence that our fusion vaccines could enhance the protective efficiency against DHBV infection in ducks.
Reference | Related Articles | Metrics
Conditional and unconditional QTLs mapping of gluten strength in common wheat (Triticum aestivum L.)
LIU Tong-tong, LIU Kai, WANG Fang-fang, ZHANG Ying, LI Qing-fang, ZHANG Kai-ran, XIE Chu-peng, TIAN Ji-chun, CHEN Jian-sheng
2017, 16 (10): 2145-2155.   DOI: 10.1016/S2095-3119(16)61564-2
Abstract707)      PDF in ScienceDirect      
    Dissecting the genetic relationships among gluten-related traits is important for high quality wheat breeding. Quantitative trait loci (QTLs) analysis for gluten strength, as measured by sedimentation volume (SV) and gluten index (GI), was performed using the QTLNetwork 2.0 software. Recombinant inbred lines (RILs) derived from the winter wheat varieties Shannong 01-35×Gaocheng 9411 were used for the study. A total of seven additive QTLs for gluten strength were identified using an unconditional analysis. QGi1D-13 and QSv1D-14 were detected through unconditional and conditional QTLs mapping, which explained 9.15–45.08% of the phenotypic variation. QTLs only identified under conditional QTL mapping were located in three marker intervals: WPT-3743–GLU-D1 (1D), WPT-7001–WMC258 (1B), and WPT-8682–WPT-5562 (1B). Six pairs of epistatic QTLs distributed nine chromosomes were identified. Of these, two main effect QTLs (QGi1D-13 and QSv1D-14) and 12 pairs of epistatic QTLs were involved in interactions with the environment. The results indicated that chromosomes 1B and 1D are important for the improvement of gluten strength in common wheat. The combination of conditional and unconditional QTLs mapping could be useful for a better understanding of the interdependence of different traits at the QTL molecular level.
Reference | Related Articles | Metrics
Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds
LU Yun-feng, CHEN Ji-bao, ZHANG Bo, LI Qing-gang, WANG Zhi-xiu, ZHANG Hao, WU Ke-liang
2017, 16 (08): 1789-1799.   DOI: 10.1016/S2095-3119(16)61624-6
Abstract673)      PDF in ScienceDirect      
    The enzyme Δ32-dienoyl-CoA isomerase (ECI1) plays a crucial role in the mitochondrial β-oxidation of fatty acids with a double-bond in odd and even positions. The ECI1 gene might be a qualified candidate for studies pertaining to lipid deposition and meat quality in swine. In the present study, ECI1 cDNA of the Tibetan pig was obtained by in silico cloning and verified by PCR analysis. Single-nucleotide polymorphisms (SNPs) of ECI1 were screened by PCR-sequencing and genotypes of those SNPs were tested by PCR-restriction fragment length polymorphism (PCR-RFLP) in Diannan small-ear pigs (DSP, n=40), Tibetan pigs (TP, n=60) and Yorkshire pigs (YP, n=30). The expression levels of ECI1 were analyzed by real-time quantitative PCR and Western blotting in tissues of the liver, backfat, and longissimus dorsi (LD) muscle of DSP (n=8), TP (n=8) and YP (n=8). Single factor linear correlation analysis was applied separately for each breed to evaluate correlations between ECI1 gene expression in the LD muscle and intramuscular fat (IMF) content. We obtained an ECI1 gene length of 1 401 bp from the cDNA that contained a full coding region of 909 bp. Three novel SNPs (g.42425337G>A; g.42424666A>G; and g.42422755A>G) were detected, and only g.42424666A>G exhibited three genotypes among the three breeds. The ECI1 expression levels in the LD muscle of DSP and TP were significantly higher than that of YP (P<0.05). Moreover, TP had the highest ECI1 expression in backfat (P<0.01), and a positive correlation was observed between gene expression and IMF content. The results suggest that differences in ECI1 gene expression might be related to lipid deposition and meat quality in pig.
Reference | Related Articles | Metrics
Screening and characterization of a novel ruminal cellulase gene (Umcel-1) from a metagenomic library of gayal (Bos frontalis)
LI Bi-feng, ZHU Ya-xin, GU Zhao-bing, CHEN Yuan, LENG Jing, GOU Xiao, FENG Li, LI Qing, XI Dong-mei, MAO Hua-ming, YANG Shu-Li
2016, 15 (4): 855-861.   DOI: 10.1016/S2095-3119(15)61144-3
Abstract1749)      PDF in ScienceDirect      
Gayal is a rare semi-wild bovine species found in the Indo-China. They can graze grasses, including bamboo leaves, as well as reeds and other plant species, and grow to higher mature live weights than Yunnan Yellow cattle maintained in similar harsh environments. The aim of this study was to identify specific cellulase in the gayal rumen. A metagenomic fosmid library was constructed using genomic DNA isolated from the ruminal contents of four adult gayals. This library contained 38 400 clones with an average insert size of 35.5 kb. The Umcel-1 gene was isolated from this library. Investigation of the cellulase activity of 24 random clones led to the identification of the Umcel-1 gene, which exhibited the most potent cellulase activity. Sequencing the Umcel-1 gene revealed that it contained an open reading frame of 942 base pairs that encoded a product of 313 amino acids. The putative gene Umcel-1 product belonged to the glycosyl hydrolase family 5 and showed the highest homology to the cellulase (GenBank accession no. YP_004310852.1) from Clostridium lentocellum DSM 5427, with 44% identity and 62% similarity. The Umcel-1 gene was heterologously expressed in Escherichia coli BL21, and recombinant Umcel-1 was purified. The activity of purified recombinant Umcel-1 was assessed, and the results revealed that it hydrolyzed carboxymethyl cellulose with optimal activity at pH 5.5 and 45°C. To our knowledge, this study provides the first evidence for a cellulase produced by bacteria in gayal rumen.
Reference | Related Articles | Metrics
Effect of feeding transgenic cry1Ab/cry1Ac rice on indices of immune function in broilers
LIU Ran-ran, ZHAO Gui-ping, ZHENG Mai-qing, LIU Jie, ZHANG Jing-jing, LI Peng, LI Qing-he, FENG Jing-hai, ZHANG Min-hong, WEN Jie
2016, 15 (06): 1355-1363.   DOI: 10.1016/S2095-3119(15)61281-3
Abstract1869)      PDF in ScienceDirect      
  The safety of feeding transgenic cry1Ab/cry1Ac rice (a genetically modified (GM) rice variety) to broilers was examined from an immunological perspective. Hatchling Arbor Acres chickens (240) were assigned to two dietary treatments (diets containing GM or non-GM rice) with 12 replicates per group and 10 birds per replicate. Traits were measured on one randomly selected bird from each replicate at d 21 and 42. The 42-d feeding trial revealed that cry1Ab/cry1Ac rice had no significant effect relative to non-GM rice on body weight and the immune organ indices. No significant pathological lesion in the spleen and bursa of Fabricius was found in the GM rice group. There were no significant differences in serum concentrations of immunoglobulin Y (IgY), IgM, interleukin 4 (IL-4) and IL-6 between the two groups at d 21 or 42, except for IL-6 being higher (P<0.05) in the GM-fed chickens at d 42. There were no differences in the T and B lymphocyte transformation rate and CD4+/CD8+ ratio between the two groups at d 42. Additionally, there was no significant difference between the two diets in expression of relevant genes viz. the major histocompatibility complex class II beta chain (BLB2), interferon beta 1 (IFNβ), tumour necrosis factor alpha-like (TNFα) and toll-like receptor 4 (TLR4) in the spleen and bursa of Fabricius. All the data demonstrated that transgenic cry1Ab/cry1Ac rice had no adverse effect on these aspects of immune function of broilers during 42-d feeding trial. Transgenic rice was therefore indistinguishable from non-GM rice in terms of short-term feeding in chickens.  
Reference | Related Articles | Metrics
Economic Growth, Demographic Change and Rural-Urban Migration in China
ZHONG Fu-ning, LI Qing, XIANG Jing , ZHU Jing
2013, 12 (10): 1884-1895.   DOI: 10.1016/S2095-3119(13)60597-3
Abstract1608)      PDF in ScienceDirect      
Is China able to maintain fast growth after three decades? This paper tries to answer this question by: 1) arguing that factors contributed to sustained long-run growth at supply side; 2) focusing on contributions of demographic dividend especially that of rural-urban migration; and 3) analyzing rural demographic change with information collected through village-wide household survey. Policy alternatives to realize remaining potential demographic dividend are proposed based on the analysis of changing rural demographic structure.
Reference | Related Articles | Metrics
Effect of Semen vaccariae and Taraxacumogono on CellAdhesion of Bovine Mammary Epithelial Cells
TONG Jin-jin, LI Ye, LIU Rong, GAO Xue-jun , LI Qing-zhang
2012, 12 (12): 2043-2050.   DOI: 10.1016/S1671-2927(00)8742
Abstract1242)      PDF in ScienceDirect      
The aim of this study is to reveal the regulation mechanism of the effect of Semen vaccariae and Taraxacu mogono on the cell-cell adhersion molecule, E-cadherin and b-catenin on the proliferation role and secretion function of bovine mammary epithelial cells cultured in vitro. Firstly, the epithelial character of bovine mammary epithelial cells was authenticated using immunofluorescence, then the cell grow curve was observed and investigated after S. vaccariae and T. mogono treatment. On the effect of S. vaccariae and T. mogono, cell adhesion molecules E-cadherin, b-catenin and CycinD1 mRNA and protein were detected by qRT-PCR and Western blotting, respectively. The results showed that the cellular keratin 18 expressed positively and proliferated vigorously after S. vaccariae and T. mogono treament. The mRNA and protein levels of E-cadherin and CycinD1 were remarkably higher (P<0.05) in 36 h after S. vaccariae and T. mogono treatment. The cell proliferation at 36 h was increased significantly (P<0.05). In conclusion, S. vaccariae and T. mogono have a positive impact on the cell proliferation and an effect on the adhesion molecules E-cadherin, b-catenin and CycinD1 in the Wnt signaling pathway.
Reference | Related Articles | Metrics
Bzw2 Promotes Proliferation and Lactation of Mammary Epithelial Cell in Dairy Goat
SUN Rui-qiu, LI Qing-zhang, YAN Hong-bo, ZHAO Jing, GAO Xue-jun
2012, 12 (11): 1884-1891.   DOI: 10.1016/S1671-2927(00)8724
Abstract1106)      PDF in ScienceDirect      
Mitosis of mammary epithelial cell is foundation of mammal lactation. We developed a strategy of combined application of generation of longer cDNA fragments from the serial analysis of gene expression (SAGE) tags for gene identification (GLGI) to screen and identify genes influencing lactating ability of mammary epithelial cell in dairy goat. GLGI as a new tag identification technique was brought about with SAGE. Bzw2 was found as a candidate gene related to lactation by screening Long-SAGE library of mammary gland in dairy goat. Bzw2 cDNA was synthesized by switching mechanism at 5´-end of RNA transcript (SMART) technology. The mRNA level of Bzw2 was relatively higher in early lactation than in other development stages of mammary gland. The proliferation of mammary epithelial cell was inhibited by transfecting specific shRNA of Bzw2. The mRNA levels of Stat5, Csn2 and Prlr were also down-regulated, suggesting the lactating ability of mammary epithelial cell was attenuated after Bzw2 RNAi. The reduction of mammary epithelial cell growth and lactation by Bzw2 RNAi was rescued through over-expression of Bzw2. These results revealed that Bzw2 might play an important role in lactation though the molecular mechanism was still unclear.
Reference | Related Articles | Metrics
Metabolic Regulation of Mammary Gland Epithelial Cells of Dairy Cow by Galactopoietic Compound Isolated from Vaccariae segetalis
TONG Hui-li, GAO Xue-jun, LI Qing-zhang, LIU Jie, LI Nan, WAN Zhong-ying
2011, 10 (7): 1106-1116.   DOI: 10.1016/S1671-2927(11)60100-4
Abstract1900)      PDF in ScienceDirect      
In previous experiment, we isolated a compound dibutyl phthalate (DBP) from Vaccaria segetalis which had galactopoieticfunction on mammary gland epithelial cells of dairy cow (DCMECs). In this experiment, we ascertained the metabolicregulation function of DBP on DCMECs. Many genes related to lactation including Stat5, AMPK, â-casein, Glut1, SREBP-1,PEPCK, and ACC were detected by real-time PCR. Furthermore, Stat5 and AMPK were detected by Western blot andimmunofluorescence co-localization, respectively. The results showed that DBP stimulates the expression of Stat5 andp-Stat5, thus activates Stat5 cell signal transduction pathway and stimulates â-casein synthesis. DBP also raises theactivities of Glut1 and AMPK to stimulate glucose uptake and glycometabolism and activates the expression of AMPKdownstream target genes PEPCK and ACC and expression of SREBP-1 to stimulate milk fat synthesis. In addition, theactivities of HK, G-6-PDH, ICDH, ATPase, and energy charges were stimulated by DBP to increase the energy metabolismlevel of DCMECs. The results showed DBP stimulates energy metabolism related to galactopoietic function in DCMECs.
Reference | Related Articles | Metrics