Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination
Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang
2024, 23 (7): 2164-2177.   DOI: 10.1016/j.jia.2023.07.023
Abstract170)      PDF in ScienceDirect      
The P-type plasma membrane (PM) H+-ATPases (HAs) are crucial for plant development, growth, and defense.  The HAs have been thoroughly characterized in many different plants.  However, despite their importance, the functions of HAs in germination and seed dormancy (SD) have not been validated in wheat.  Here, we identified 28 TaHA genes (TaHA1-28) in common wheat, which were divided into five subfamilies.  An examination of gene expression in strong- and weak-SD wheat varieties led to the discovery of six candidate genes (TaHA7/-12/-14/-16/-18/-20).  Based on a single nucleotide polymorphism (SNP) mutation (C/T) in the TaHA7 coding region, a CAPS marker (HA7) was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.  We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate (EMS) in ‘Jimai 22’ and ‘Jing 411’ backgrounds, and in transgenic Arabidopsis lines.  TaHA7 appears to regulate germination and SD by mediating gibberellic acid (GA) and abscisic acid (ABA) signaling, metabolism, and biosynthesis.  The results presented here will enable future research regarding the TaHAs in wheat.


Reference | Related Articles | Metrics
Preparation and application of a novel monoclonal antibody specific for the heat shock protein 60 of Lawsonia intracellularis
XIAO Ning, LÜ Yun-yun, LI Jian-nan, CHEN Chang-feng, LIN Hui-xing, FAN Hong-jie
2023, 22 (9): 2824-2833.   DOI: 10.1016/j.jia.2023.04.006
Abstract183)      PDF in ScienceDirect      

Porcine proliferative enteropathy (PPE), an important infectious disease in pig production caused by an obligate intracellular bacterium Lawsonia intracellularis, is commonly associated with diarrhea and reduced weight gain in growing pigs widespread.  An accurate method for detecting Lintracellularis is particularly important for preventing and controlling PPE.  Heat shock protein 60 (Hsp60) is an immunodominant bacterial antigen found in all eukaryotic and prokaryotic organisms.  Thus, the purpose of the current investigation was to produce a novel Lintracellularis Hsp60 monoclonal antibody (mAb) useful for immunodiagnostics.  Three hybridomas secreted anti-Hsp60 termed 3E5, 4E2, and 9G6 were generated, and the titers of ascitic fluids of 3E5, 4E2, 9G6 were 1:1 024 000, 1:2 048 000 and 1:2 048 000, respectively.  The Western blotting analysis demonstrated that recombinant Hsp60 (rHsp60) was recognized by mAbs 3E5, 4E2 and 9G6.  Subsequently, analyses of specificity showed all the mAbs were highly specific to Lintracellularis while could not significantly react with other enteric bacteria commonly found in the ileum of pigs, such as Escherichia coli, Salmonella Choleraesuis, Salmonella Typhimurium, and Brachyspira hyodysenteriae.  Furthermore, the mAbs were useful for detecting Lintracellularis in the infected monolayer cells and histological sections of the ileum from PPE-affected pigs.  Our research will provide a foundation for the development of immunological diagnostic tests

Reference | Related Articles | Metrics
Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model
SONG Chao-yu, ZHANG Fan, LI Jian-sheng, XIE Jin-yi, YANG Chen, ZHOU Hang, ZHANG Jun-xiong
2023, 22 (6): 1671-1683.   DOI: 10.1016/j.jia.2022.09.021
Abstract361)      PDF in ScienceDirect      

Maize tassel detection is essential for future agronomic management in maize planting and breeding, with application in yield estimation, growth monitoring, intelligent picking, and disease detection.  However, detecting maize tassels in the field poses prominent challenges as they are often obscured by widespread occlusions and differ in size and morphological color at different growth stages.  This study proposes the SEYOLOX-tiny Model that more accurately and robustly detects maize tassels in the field.  Firstly, the data acquisition method ensures the balance between the image quality and image acquisition efficiency and obtains maize tassel images from different periods to enrich the dataset by unmanned aerial vehicle (UAV).  Moreover, the robust detection network extends YOLOX by embedding an attention mechanism to realize the extraction of critical features and suppressing the noise caused by adverse factors (e.g., occlusions and overlaps), which could be more suitable and robust for operation in complex natural environments.  Experimental results verify the research hypothesis and show a mean average precision (mAP@0.5) of 95.0%.  The mAP@0.5, mAP@0.5–0.95, mAP@0.5–0.95 (area=small), and mAP@0.5–0.95 (area=medium) average values increased by 1.5, 1.8, 5.3, and 1.7%, respectively, compared to the original model.  The proposed method can effectively meet the precision and robustness requirements of the vision system in maize tassel detection.

Reference | Related Articles | Metrics

Investigation of Aegilops umbellulata for stripe rust resistance, heading date, and the contents of iron, zinc, and gluten protein

SONG Zhong-ping, ZUO Yuan-yuan, XIANG Qin, LI Wen-jia, LI Jian, LIU Gang, DAI Shou-fen, YAN Ze-hong
2023, 22 (4): 1258-1265.   DOI: 10.1016/j.jia.2022.08.014
Abstract303)      PDF in ScienceDirect      

Aegilops umbellulata (UU) is a wheat wild relative that has potential use in the genetic improvement of wheat.  In this study, 46 Aeumbellulata accessions were investigated for stripe rust resistance, heading date (HD), and the contents of iron (Fe), zinc (Zn), and seed gluten proteins.  Forty-two of the accessions were classified as resistant to stripe rust, while the other four accessions were classified as susceptible to stripe rust in four environments.  The average HD of Aeumbellulata was significantly longer than that of three common wheat cultivars (180.9 d vs. 137.0 d), with the exception of PI226500 (138.9 d).  The Aeumbellulata accessions also showed high variability in Fe (69.74–348.09 mg kg–1) and Zn (49.83–101.65 mg kg–1) contents. Three accessions (viz., PI542362, PI542363, and PI554399) showed relatively higher Fe (230.96–348.09 mg kg–1) and Zn (92.46–101.65 mg kg–1) contents than the others.  The Fe content of Aeumbellulata was similar to those of Aecomosa and Aemarkgrafii but higher than those of Aetauschii and common wheat.  Aegilops umbellulata showed a higher Zn content than Aetauschii, Aecomosa, and common wheat, but a lower content than Aemarkgrafii.  Furthermore, Aeumbellulata had the highest proportion of γ-gliadin among all the species investigated (Aeumbellulata vs. other species=mean 72.11% vs. 49.37%; range: 55.33–86.99% vs. 29.60–67.91%).  These results demonstrated that Aeumbellulata exhibits great diversity in the investigated traits, so it can provide a potential gene pool for the genetic improvement of these traits in wheat.

Reference | Related Articles | Metrics
Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates
WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong
2023, 22 (3): 872-880.   DOI: 10.1016/j.jia.2022.08.110
Abstract211)      PDF in ScienceDirect      

Caprine arthritis-encephalitis virus (CAEV) is an under-studied virus infecting caprines and ovines worldwide.  Over the last four decades, CAEV has spread in China, obtaining genomic data on CAEV strains circulating in China is of importance for developing diagnostic methods and eradicating associated diseases.  However, there is limited information on the genome, including characterizations, and the probable origin.  This work aimed to characterize Chinese CAEV genomes and population structures.  Five CAEV strains isolated from infected dairy goats between 1989 and 1994 in Gansu, Guizhou, Shaanxi, Shandong and Sichuan provinces were cloned and sequenced.  The Chinese CAEV had a 58–93% genome similarities to strains outside of China, and they belonged to subgenotype B1.  The highest similarity levels (98.3–99.3%) were with two other Chinese strains, and they shared a 91.8–92.3% similarity with the strain Clements (GenBank accession no. NC_001463.1) from outside of China.  The Chinese CAEV strains isolated from different provinces over five years were still highly homologous and contained unique ancestral population components, indicating that these Chinese strains had a common origin that differed from other known strains.  Our results provide genomic data on circulating Chinese CAEV strains and will be useful for future epidemiological investigations and CAEV eradication programs.

Reference | Related Articles | Metrics
A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae)
MA Kang-sheng, TANG Qiu-ling, LIANG Ping-zhuo, LI Jian-hong, GAO Xi-wu
2022, 21 (7): 2055-2064.   DOI: 10.1016/S2095-3119(21)63714-0
Abstract288)      PDF in ScienceDirect      
The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is an important insect pest of cotton crops worldwide.  The objectives of this study were to determine the acute toxicity of afidopyropen and whether there are any effects of sublethal concentrations of afidopyropen on the biological characteristics of A. gossypii.  The results showed that afidopyropen possesses high acute toxicity to adult A. gossypii with a 72 h LC50 value of 1.062 mg L–1.  A sublethal concentration (LC10) of afidopyropen significantly decreased adult longevity, fecundity and oviposition days of female adults in both F0 and F1 generations.  The total pre-adult survival of F1 progeny was also significantly reduced by 30% at the LC10 of afidopyropen.  In addition, the nymph developmental time, pre-adult period, adult pre-reproductive period (APRP), and total pre-reproductive period (TPRP) of the F1 progeny were significantly prolonged compared with the control.  Several population parameters, including the net reproductive rate (R0), intrinsic rate of increase (r) and finite rate of increase (λ) of F1 progeny were significantly decreased by a sublethal afidopyropen concentration exposure.  These results indicated that sublethal concentration of afidopyropen can significantly suppress A. gossypii population growth.  It would be useful for assessing the overall effects of afidopyropen on A. gossypii.  
Reference | Related Articles | Metrics
Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus
DAI Shou-fen, CHEN Hai-xia, LI Hao-yuan, YANG Wan-jun, ZHAI Zhi, LIU Qian-yu, LI Jian, YAN Ze-hong
2022, 21 (7): 1877-1885.   DOI: 10.1016/S2095-3119(21)63651-1
Abstract196)      PDF in ScienceDirect      
This study evaluated the quality potential of seven synthetic hexaploid wheats (2n=6x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii (SHWSD).  Major quality parameters related to dough strength, gluten proteins (including high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS), gliadins), and their ratios between SHWSD and the weak gluten wheat control Chuannong 16 (CN16) were measured in at least three environments (except STD7).  The zeleny sedimentation value (ZSV), dough development time (DDT), dough stability time (DST), and farinograph quality number (FQN) of SHWSD were considered stable under different environments, with their respective ranges being 8.00–17.67 mL, 0.57–1.50 min, 0.73–1.80 min, and 9.50–27.00.  The ZSV, DDT, DST, and FQN of SHWSD were smaller than those of CN16, suggesting that SHWSD had a weaker dough strength than CN16.  Although SHWSD had a lower gluten index than CN16, its wet and dry gluten contents were similar to or even higher than those of CN16 in all environments tested.  The protein content of grains (12.81–18.21%) and flours (14.20–20.31%) in SHWSD was higher than that in CN16.  The amount of HMW-GS in SHWSD sharply decreased under the expression of fewer HMW-GS genes, and the LMW-GS, gliadins, and total glutenins were simultaneously increased in SHWSD in comparison with CN16.  Moreover, SHWSD had higher ratios of LMW-GS/glutenin and gliadin/glutenin but a lower ratio of HMW-GS/glutenin than CN16.  These results provide necessary information for the utilization of SHWSD in weak-gluten wheat breeding.
Reference | Related Articles | Metrics
UBE2I stimulates female gonadal differentiation in chicken (Gallus gallus) embryos
JIN Kai, ZHOU Jing, ZUO Qi-sheng, LI Jian-cheng, Jiuzhou SONG, ZHANG Ya-ni, CHANG Guo-bing, CHEN Guo-hong, LI Bi-chun
2021, 20 (11): 2986-2994.   DOI: 10.1016/S2095-3119(20)63486-4
Abstract111)      PDF in ScienceDirect      
Without known analogous sex-determining factors like SRY (sex determining region Y) in mammals, the chicken (Gallus gallus) sex determination mechanism still remains unclear, which highly restricts the biological research on chicken development and poultry single-sex reproduction.  Here we not only characterized a new female-biased gene UBE2I and identified the expression pattern by qRT-PCR, but also described the functional role of UBE2I in the gonadal development of chicken embryos.  Results showed that UBE2I exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads and robust expression in ovaries of newborn chickens.  Most importantly, we successfully developed an effective method to interfere or overexpress UBE2I in chicken embryos through the intravascular injection.  The qRT-PCR analysis showed that the sex-related genes (FOXL2, CYP19A1 and HINTW) in females were upregulated (P<0.05) under the overexpression of UBE2I and the sex-related genes (SOX9, DMRT1 and WT1) in females were downregulated (P<0.05) after interfering UBE2I.  Furthermore, the change of UBE2I expression was associated with the level of estradiol and its receptors (AR and ESR), which suggests that UBE2I is necessary to initiate the female-specific development in chickens.  In conclusion, this work demonstrates that UBE2I is a crucial sex differentiation-related gene in the embryonic development of chickens, which provides insights for further understanding the mechanism of sex determination in chickens.
 
Reference | Related Articles | Metrics
Research and application of real-time monitoring and early warning thresholds for multi-temporal agricultural products information
XU Shi-wei, WANG Yu, WANG Sheng-wei, LI Jian-zheng
2020, 19 (10): 2582-2596.   DOI: 10.1016/S2095-3119(20)63368-8
Abstract132)      PDF in ScienceDirect      
Monitoring and early warning is an important means to effectively prevent risks in agricultural production, consumption and price.  In particular, with the change of modes of national administration against the background of big data, improving the capacity to monitor agricultural products is of great significance for macroeconomic decision-making.  Agricultural product information early warning thresholds are the core of agricultural product monitoring and early warning.  How to appropriately determine the early warning thresholds of multi-temporal agricultural product information is a key question to realize real-time and dynamic monitoring and early warning.  Based on the theory of abnormal fluctuation of agricultural product information and the research of substantive impact on the society, this paper comprehensively discussed the methods to determine the thresholds of agricultural product information fluctuation in different time dimensions.  Based on the data of the National Bureau of Statistics of China (NBSC) and survey data, this paper used a variety of statistical methods to determine the early warning thresholds of the production, consumption and prices of agricultural products.  Combined with Delphi expert judgment correction method, it finally determined the early warning thresholds of agricultural product information in multiple time, and carried out early warning analysis on the fluctuation of agricultural product monitoring information in 2018.  The results show that: (1) the daily, weekly and monthly monitoring and early warning thresholds of agricultural products play an important early warning role in monitoring abnormal fluctuations with agricultural products; (2) the multi-temporal monitoring and early warning thresholds of agricultural product information identified by the research institute can provide effective early warning on current abnormal fluctuation of agricultural product information, provide a benchmarking standard for China’s agricultural production, consumption and price monitoring and early warning at the national macro level, and further improve the application of China’s agricultural product monitoring and early warning.
Reference | Related Articles | Metrics
Transcriptomic analyses reveal new genes and networks response to H5N1 influenza viruses in duck (Anas platyrhynchos)
HUANG Yin-hua, FENG Hua-peng, HUANG Li-ren, YI Kang, RONG En-guang, CHEN Xiao-yun, LI Jian-wen, WANG Zeng, ZHU Peng-yang, LIU Xiao-juan, WANG Xiao-xue, HU Jia-xiang, LIU Xin, CHEN Hua-lan, WANG Jun...
2019, 18 (7): 1460-1472.   DOI: 10.1016/S2095-3119(19)62646-8
Abstract205)      PDF in ScienceDirect      
H5N1 influenza represents one of the great challenges to public health.  Some H5N1 viruses (i.e., A/goose/Hubei/65/05, GS/65) are weakly pathogenic, while the others (i.e., A/duck/Hubei/49/05, DK/49) are highly pathogenic to their natural hosts.  Here, we performed brain and spleen transcriptomic analyses of control ducks and ones infected by the DK/49 or the GS/65 H5N1 virus.  We demonstrated that, compared to the GS/65 virus, the DK/49 virus infection changed more numerous immune genes’ expression and caused continuous increasing of immune pathways (i.e., RIG-I and MDA5) in ducks.  We found that both H5N1 virus strains might escape or subvert host immune response through affecting alternative translation of immune genes, while the DK/49 virus seemed to induce alternative translation of more immune genes than the GS/65 virus.  We also identified five co-expressional modules associated with H5N1 virus replication through the weight correlation network analysis (WGCNA).  Moreover, we first demonstrated that the duck BCL2L15 and DCSTAMP in one of these five modules inhibited both the highly pathogenic and weakly pathogenic H5N1 virus replication efficiently.  These analyses, in combination with our comprehensive transcriptomic data, provided global view of the molecular architecture for the interaction between host and H5N1 viruses. 
Reference | Related Articles | Metrics
A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China
SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing
2019, 18 (1): 190-200.   DOI: 10.1016/S2095-3119(17)61902-6
Abstract341)      PDF (1246KB)(334)      
This study investigated the carbon (C) and nitrogen (N) gas emissions (N2O, NH3, CO2 and CH4) from solid pig manure management in China.  Gas emissions were quantified from static piles over 60 days during summer in China’s Yangtze River Basin, using Drager-Tube and static chamber-gas chromatography techniques.  High emissions of NH3 and N2O were observed at the early stage of storage, but high emission of CH4 occured later during storage.  Overall, 62% of the total C in the original pile was lost; CO2 and CH4 emissions accounted for 57 and 0.2% of C lost respectively.  Over the same time, 41% of the total N in the original pile was lost; NH3 and N2O emissions accounted for 15 and 0.3% of N lost respectively.  The volatilization of NH3 during storage in summer was 4.56 g NH3 per kg dry weight.  The total greenhouse gas (GHG) emissions during storage accounted for 67.93 g CO2 equivalent per kg dry weight; N2O and CH4 contributed to 46 and 55% of total GHG emissions respectively.  Given China’s major role in pig production, further attention should given to pig manure management to mitigate its contribution to atmospheric pollution.
 
Reference | Related Articles | Metrics
Fiber damage of machine-harvested cotton before ginning and after lint cleaning
TIAN Jing-shan, ZHANG Xu-yi, ZHANG Wang-feng, LI Jian-feng, YANG Yan-long, DONG Heng-yi, JIU Xing-li, YU Yong-chuan, ZHAO Zhan, XU Shou-zhen, ZUO Wen-qing
2018, 17 (05): 1120-1127.   DOI: 10.1016/S2095-3119(17)61730-1
Abstract475)      PDF in ScienceDirect      
Machine harvesting increases the foreign matter content of seed cotton.  Excessive cleaning causes fiber damage and economic loss.  Most trading companies in the Xinjiang Uygur Autonomous Region, China have indicated reluctance to use machine-harvested cotton.  The first objective was to determine how the fiber quality was affected by the ginning and lint cleaning and how the fiber damage during levels of lint cleaning changed. The second objective was to determine the optimum number of lint cleaners for machine-harvested cotton based on fiber damage.  Cotton samples were collected from 13 fields and processed in seven ginneries between 2013 and 2015.  The results indicated that ginning and lint cleaning didn’t have significant effect on fiber strength and significantly affected both fiber length and short fiber index.  Fiber length was reduced by more than 1.00 mm from six of 13 fields after lint cleaning, then the damage rate on short fiber index from 11 of 13 fields was more than 20%.  The third lint cleaning caused great fiber damage, reducing fiber length by 0.35 mm and increasing short fiber index by 0.65%.  So, the lint should be cleaned by one lint cleaner in the Xinjiang, however, the stage of lint cleaning was sometimes omitted when the foreign matter content of lint was little.
Reference | Related Articles | Metrics
Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China
SHENG Fang, CHEN Shu-ying, TIAN Jia, LI Peng, QIN Xue, WANG Lei, LUO Shu-ping, LI Jiang
2017, 16 (11): 2482-2498.   DOI: 10.1016/S2095-3119(17)61688-5
Abstract627)      PDF in ScienceDirect      
The wild hawthorn species, Crataegus songorica K. Koch., is an important wild germplasm resource in Xinjiang, China that has been endangered in recent years.  The genetic diversity of C. songorica K. Koch. germplasm in five populations from Daxigou, Xinjiang, China were evaluated based on phenotypic traits and ISSR molecular markers to provide basic information on resource protection, rational utilization and genetic improvement.  The F-value for the phenotypic differentiation coefficient of the 33 traits measured ranged from 0.266 to 15.128, and mean value was 13.85%.  The variation among populations was found to be lower than that within population.  A total of 303 loci were detected within the five populations by 12 primers.  Within 298 polymorphic loci, the polymorphism was 98.35%, showing a high genetic diversity in C. songorica K. Koch.  The gene diversity within population, total population genetic diversity, genetic differentiation coefficient and gene flow were 0.2779, 0.3235, 0.1408, and 3.0511, respectively.  Our results showed that C. songorica K. Koch. from Xinjiang has a high level of genetic diversity at both the phenotypic and molecular levels.  Significant genetic differentiation existed within population and the differentiation trend showed a regional association.  And in this study, in situ and ex situ conservation approaches were raised for wild hawthorn protection utilization.
Reference | Related Articles | Metrics
Modeling the regional grazing impact on vegetation carbon sequestration ability in Temperate Eurasian Steppe
CHEN Yi-zhao, SUN Zheng-guo, QIN Zhi-hao, Pavel Propastin, WANG Wei, LI Jian-long, RUAN Hong-hua
2017, 16 (10): 2323-2336.   DOI: 10.1016/S2095-3119(16)61614-3
Abstract488)      PDF in ScienceDirect      
Anthropogenic activities profoundly influence carbon sequestration in the Eurasian Steppe.  In particular, grazing has been identified as having a major effect on carbon sequestration.  However, the extent to which grazing affects regional patterns or carbon sequestration is unknown.  In this study, we evaluated the impact of regional grazing on grassland carbon sequestration using the Boreal Ecosystem Productivity Simulator (BEPS) and the Shiyomi grazing model.  Model performances were validated against the results from field measurements and eddy covariance (EC) sites.  Model outputs showed that in 2008, the regional net primary productivity (NPP) was 79.5 g C m–2, and the net ecosystem productivity (NEP) was –6.5 g C m–2, characterizing the region as a weak carbon source.  The Mongol Steppe (MS) was identified as a carbon sink, whereas the Kazakh Steppe (KS) was either carbon neutral or a weak carbon source.  The spatial patterns of grazing density are divergent between the MS and the KS.  In the MS, livestock was mainly distributed in China with relatively good management, while in the KS livestock was mainly concentrated in the southern countries (especially Uzbekistan and Turkmenistan) with harsh environments and poor management.  The consumption percentages of NPP in Turkmenistan, Tajikistan and Uzbekistan were 5.3, 3.3 and 1.2%, respectively, whereas the percentages in other countries were lower than 1%.  Correspondingly, grazing consumption contributed to the carbon sources of Turkmenistan, Tajikistan and Uzbekistan by 11.6, 6.3 and 4.3%, respectively, while it weakened the carbon sink in Inner Mongolia, China and Mongolia by 1.6 and 0.5%.  This regional pattern should be affected by different sub-regional characteristics, e.g., the continuous degradation of grassland in the southern part of the KS and the restoration of grassland in Inner Mongolia, China.
Reference | Related Articles | Metrics
Simple nonlinear model for the relationship between maize yield and cumulative water amount
LIU Cheng SUN Bao-cheng, TANG Huai-jun, WANG Tian-yu LI Yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Jian-sheng
2017, 16 (04): 858-866.   DOI: 10.1016/S2095-3119(16)61493-4
Abstract794)      PDF in ScienceDirect      
Both the additive and multiplicative models of crop yield and water supply are polynomial equations, and the number of parameters increases linearly when the growing period is specified.  However, interactions among multiple parameters occasionally lead to unreasonable estimations of certain parameters, which were water sensitivity coefficients but with negative value.  Additionally, evapotranspiration must be measured as a model input.  To facilitate the application of these models and overcome the aforementioned shortcomings, a simple model with only three parameters was derived in this paper based on certain general quantitative relations of crop yield (Y) and water supply (W).  The new model, Y/YmWk/(Wk+whk), fits an S or a saturated curve of crop yield with the cumulative amount of water.  Three parameters are related to biological factors: the yield potential (Ym), the water requirement to achieve half of the yield potential (half-yield water requirement, wh), and the water sensitivity coefficient (k).  The model was validated with data from 24 maize lines obtained in the present study and 17 maize hybrids published by other authors.  The results showed that the model was well fit to the data, and the normal root of the mean square error (NRMSE) values were 2.8 to 17.8% (average 7.2%) for the 24 maize lines and 2.7 to 12.7% (average 7.4%) for the 17 maize varieties.  According to the present model, the maize water-sensitive stages in descending order were pollen shedding and silking, tasselling, jointing, initial grain ?lling, germination, middle grain ?lling, late grain ?lling, and end of grain ?lling.  This sequence was consistent with actual observations in the maize field.  The present model may be easily used to analyse the water use efficiency and drought tolerance of maize at specific stages.
Reference | Related Articles | Metrics
Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species
TIAN Jia, ZENG Bin, LUO Shu-ping, LI Xiu-gen, WU Bin, LI Jiang
2016, 15 (2): 282-294.   DOI: 10.1016/S2095-3119(15)61075-9
Abstract2514)      PDF in ScienceDirect      
Fruit size is one of the most important agronomic characters, which is mainly determined by cell number and cell size. However, our current knowledge about pear is largely unknown. Through counting of pear mesocarp cells at different stages, we found that the cell number, rather than the cell size, is responsible for the differences between small- and large-fruited cultivars. Fruit weight-2.2 (fw2.2) is an important quantitative trait locus (QTL) affecting fruit weight in tomato and functions as a negative regulator in carpel cell division. To get more insights into this QTL in pear fruit development, we isolated two putative homologous fw2.2 genes, which were designated as fw2.2-like (PbFWL) genes. PbFWLs encode Cys-rich proteins with the CCXXXXCPC motif and belong to the PLAC8 superfamily. In addition, results from the subcellular localization indicated that PbFWLs were localized in the plasma membrane. The expression profile of the PbFWL genes by qRT-PCR showed they expressed higher in small-sized fruit cultivar than that in large-sized fruit cultivar during the cell division period. In summary, our data suggest that these two PbFWLs might be negatively related to the cell division in pear fruit.
Reference | Related Articles | Metrics
The Application of GGE Biplot Analysis for Evaluat ng Test Locations and Mega-Environment Investigation of Cotton Regional Trials
XU Nai-yin, Fok Michel, ZHANG Guo-wei, LI Jian , ZHOU Zhi-guo
2014, 13 (9): 1921-1933.   DOI: 10.1016/S2095-3119(13)60656-5
Abstract1374)      PDF in ScienceDirect      
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction (GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley (YaRV), China. Four traits (cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none.
Reference | Related Articles | Metrics
Classification and Net Primary Productivity of the Southern China’s Grasslands Ecosystem Based on Improved Comprehensive and Sequential Classification System (CSCS) Approach
SUN Zheng-guo, SUN Cheng-ming, ZHOU Wei, JU Wei-min , LI Jian-long
2014, 13 (4): 893-903.   DOI: 10.1016/S2095-3119(13)60415-3
Abstract1838)      PDF in ScienceDirect      
This research classified vegetation types and evaluated net primary productivity (NPP) of southern China’s grasslands based on the improved comprehensive and sequential classification system (CSCS), and proposed 5 thermal grades and 6 humidity grades. Four classes of grasslands vegetation were recognized by improved CSCS, namely, tundra grassland class, typical grassland class, mixed grassland class and alpine grassland class. At the type level, 14 types of vegetations (9 grasslands and 5 forests) were classified. The NPP had a trend to decrease from east to west and south to north, and the annual mean NPP was estimated to be 656.3 g C m-2 yr-1. The NPP value of alpine grassland class was relatively high, generally more than 1 200 g C m-2 yr-1. The NPP value of mixed grassland class was in a range from 1 000 to 1 200 g C m-2 yr-1. Tundra grassland class was located in southeastern Tibet with high elevation, and its NPP value was the lowest (<600 g C m-2 yr-1). The typical grassland class distributed in most of the area, and its NPP value was generally from 600 to 1 000 g C m-2 yr-1. The total NPP value in the study area was 68.46 Tg C. The NPP value of typical grassland class was the highest (48.44 Tg C), and mixed grassland class was the second (16.54 Tg C), followed by alpine grassland class (3.22 Tg C), with tundra grassland class being the lowest (0.25 Tg C). For all the grasslands types, the total NPP of forest meadow was the highest (34.81 Tg C), followed by sparse forest brush (16.54 Tg C), and montane meadow was the lowest (0.01 Tg C).
Reference | Related Articles | Metrics
Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China
ZHANG Xu-bo, WU Lian-hai, SUN Nan, DING Xue-shan, LI Jian-wei, WANG Bo-ren , LI Dong-chu
2014, 13 (3): 604-614.   DOI: 10.1016/S2095-3119(13)60718-2
Abstract1599)      PDF in ScienceDirect      
Upland red soils have been identified as major CO2 and N2O sources induced by human activities such as fertilization. To monitor characteristics of soil surface CO2 and N2O fluxes in cropland ecosystems after continuous fertilizer applications over decades and to separate the respective contributions of root and heterotrophic respiration to the total soil CO2 and N2O fluxes, the measurements of soil surface CO2 and N2O fluxes throughout the maize growing season in 2009 were carried out based on a fertilization experiment (from 1990) through of the maize (Zea mays L.) growing season in red soil in southern China. Five fertilization treatments were chosen from the experiment for study: zero-fertilizer application (CK), nitrogen-phosphorus- potassium (NPK) fertilizer application only, pig manure (M), NPK plus pig manure (NPKM) and NPK with straw (NPKS). Six chambers were installed in each plot. Three of them are in the inter-row soil (NR) and the others are in the soil within the row (R). Each fertilizer treatment received the same amount of N (300 kg ha-1 yr-1). Results showed that cumulative soil CO2 fluxes in NR or R were both following the order: NPKS>M, NPKM>NPK>CK. The contributions of root respiration to soil CO2 fluxes was 40, 44, 50, 47 and 35% in CK, NPK, NPKM, M and NPKS treatments, respectively, with the mean value of 43%. Cumulative soil N2O fluxes in NR or R were both following the order: NPKS, NPKM>M>NPK>CK, and soil N2O fluxes in R were 18, 20 and 30% higher than that in NR in NPKM, M and NPKS treatments, respectively, but with no difference between NR and R in NPK treatment. Furthermore, combine with soil temperature at -5 cm depth and soil moisture (0-20 cm) together could explain 55-70% and 42-59% of soil CO2 and N2O emissions with root interference and 62- 78% and 44-63% of that without root interference, respectively. In addition, soil CO2 and N2O fluxes per unit yield in NPKM (0.55 and 0.10 kg C t-1) and M (0.65 and 0.13 g N t-1) treatments were lower than those in other treatments. Therefore, manure application could be a preferred fertilization strategy in red soils in South China.
Reference | Related Articles | Metrics
Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands
MENG Hong-qi, XU Ming-gang, Lü Jia-long, HE Xin-hua, LI Jian-wei, SHI Xiao-jun, PENG
2013, 12 (11): 2092-2102.   DOI: 10.1016/S2095-3119(13)60398-6
Abstract1349)      PDF in ScienceDirect      
Long-term fertilization experiment provides the platform for understanding the proton budgets in nitrogen transformations of agricultural ecosystems. We analyzed the historical (1990-2005) observations on four agricultural long-term experiments in China (Changping, Chongqing, Gongzhuling and Qiyang) under four different fertilizations, i.e., no-fertilizer (control), sole chemical nitrogen fertilizer (FN), sole chemical phosphorous and potassium fertilizers (FPK) and chemical nitrogen, phosphorous and potassium fertilizers (FNPK). The significant decline in topsoil pH was caused not only by chemical N fertilization (0.29 and 0.89 ΔpH at Gongzhuling and Qiyang, respectively) but also by chemical PK fertilization (0.59 ΔpH at Gongzhuling). The enhancement of available nutrients in the topsoil due to long-term direct nutrients supply with chemical fertilizers was in the descending order of available P (168-599%)>available K (16-189%)>available N (9-33%). The relative rate of soil pH decline was lower under long-term judicious chemical fertilization (-0.036-0.034 ΔpH yr-1) than that under long-term sole N or PK fertilization (0.016-0.086 ΔpH yr-1). Long-term judicious chemical fertilization with N, P and K elements decreases the nutritional limitation to normal crop growth, under which more N output was distributed in biomass removal rather than the loss via nitrate leaching. We concluded that the N distribution percentage of nitrate leaching to biomass removal might be a suitable indicator to the sensitivity of agricultural ecosystems to acid inputs.
Reference | Related Articles | Metrics
Compositional and Structural Difference of Fulvic Acid from Black Soil Applied with Different Organic Materials: Assessment After Three Years
LI Jian-ming , WU Jing-gui
2013, 12 (10): 1865-1871.   DOI: 10.1016/S2095-3119(13)60397-4
Abstract1140)      PDF in ScienceDirect      
Knowledge of different effects of various organic materials on soil humic substance is important for both environmental safety and sustainable agriculture. A pot experiment was conducted at Jilin Agricultural University, Jilin Province in northeast China to discover the influence of herb residue, animal excrement, woody residue, animal remnant on fulvic acid (FA) composition and structure using differential thermal analysis-thermogravimetric (DTA-TG), fourier transform infrared spectroscopy (FTIR) and elemental analysis. DTA-TG showed the range of peak temperature in the first exothermic reaction increased following the trend: CK>herb residue>animal excrement>woody residue=animal remnant, and the most weight loss was observed in animal excrement. Moreover, the second exothermic reaction of CK- and animal excrement-FA was presented as double peaks, the order of weight loss in that area was animal remnant>CK>woody residue>animal excrement>herb residue. According to FTIR, herb residue displayed higher adsorption intensity at 2 950, 1 420, 1 240 and 1 030 cm-1, animal excrement was in reverse. At the same time, herb residue- and animal excrement-FA had an absorption peak at 1 720 cm-1, while other organic materials didn’t have this peak. As elemental analysis showed, FA isolated from various treatments was significantly distinct. It was clearly shown from our results that FA composition and structure in amended soils may be affected in different ways and at various extents on dependence of the nature and origin of amendment.
Reference | Related Articles | Metrics
Nitrogen Concentration in Subtending Cotton Leaves in Relation to Fiber Strength in Different Fruiting Branches
ZHAO Wen-qing, LI Jian, GAO Xiang-bin, WANG You-hua, MENG Ya-li , ZHOU Zhi-guo
2013, 12 (10): 1757-1770.   DOI: 10.1016/S2095-3119(13)60336-6
Abstract1311)      PDF in ScienceDirect      
Nitrogen (N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength, and its relationship with activities of key enzymes (sucrose synthase and β-1,3-glucanase) and contents of key constituents (sucrose and β-1,3-glucan) involved in fiber strength development in the lower, middle and upper fruiting branches of two cotton cultivars (Kemian 1 and NuCOTN 33B). For each sampling day, we simulated changes in fiber strength, activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.; the optimal subtending leaf N concentrations were deduced from the eqs. For the same fruiting branch, changes in the optimal leaf N concentration based on fiber development (DPA) could be simulated by power functions. From these functions, the average optimal subtending leaf N concentrations during fiber development for the cultivar, Kemian 1, were 2.84% in the lower fruiting branches, 3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches. For the cultivar, NuCOTN 33B, the optimum concentrations were 3.04, 3.28 and 3.18% in the lower, middle and upper fruiting branches, respectively. This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower, middle and upper fruiting branches.
Reference | Related Articles | Metrics
Sublethal Effects of Metaflumizone on Plutella xylostella (Lepidoptera: Plutellidae)
ZHANG Zhe, LI Jian-hong, GAO Xi-wu
2012, 12 (7): 1145-1150.   DOI: 10.1016/S1671-2927(00)8640
Abstract1524)      PDF in ScienceDirect      
Metaflumizone is a novel sodium channel blocker insecticide, which has been registered for controling the diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) in China. It is unavoidable for DBMs to be exposed to sublethal dose of metaflumizone in brassicaceous vegetable field. Sublethal effects of metaflumizone at LC15 (1.06 mg L-1) and LC25 (2.03 mg L-1) on the biological characteristics were investigated. Pupation rate, pupal period and pupal weight were significantly declined comparing with the control (P=0.05) when third instar larvae were exposed to LC15 and LC25 of metaflumizone. Comparing the control group to LC15 and LC25 treatment groups, there were significant differences in the development periods of eggs, first instar larvae, pupae and total preoviposition period. The peak of age-specific fecundity in LC15 and LC25 treatment groups was lagged behind control group. Mean values of intrinsic rate of increase (rm), net reproductive rate (R0) and finite rate of increase (λ) observed from the LC15 and LC25 treatment groups were lower than those from the control group. But mean values of gross reproduction rate (GRR) was not different. The mean generation time (T) of the treatment groups was prolonged. Whether sublethal doses of metaflumizone could stimulate reproduction in the long term needs further investigation on continuous generations.
Reference | Related Articles | Metrics
Biomass Components and Environmental Controls in Ningxia Grasslands
WANG Kai-bo, LI Jian-ping , SHANGGUAN Zhou-ping
2012, 12 (12): 2079-2087.   DOI: 10.1016/S1671-2927(00)8746
Abstract1099)      PDF in ScienceDirect      
Grassland plays an important role in the global carbon cycle and climate regulation. However, there are still large uncertainties in grassland carbon pool and also its role in global carbon cycle due to the lack of measured grassland biomass at regional scale or global scale with a unified survey method, particular for below-ground biomass. The present study, based on a total of 44 grassland sampling plots with 220 quadrats across Ningxia, investigated the characteristics of above-ground biomass (AGB), below-ground biomass (BGB), litter biomass (LB), total biomass (TB) and root:shoot ratios (R:S) for six predominantly grassland types, and their relationships with climatic factors. AGB, BGB, LB and TB varied markedly across different grassland types, the median value ranging from 28.2-692.6 g m-2 forAGB, 130.4-2036.6 g m-2 for BGB, 9.2-82.3 g m-2 for LB, and 168.0-2 681.3 g m-2 for TB. R:S showed less variation with median values from 3.2 to 5.3 (excluding marshy meadow). The different grassland types showed similar patterns of biomass allocation, with more than 70% BGB for all types. There is evidence of strong positive effects associated with mean annual precipitation (MAP) and negative effects associated with mean annual temperature (MAT) on AGB, BGB, and LB, although both factors have the opposite effect on R:S.
Reference | Related Articles | Metrics