Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (7): 2055-2064    DOI: 10.1016/S2095-3119(21)63714-0
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae)
MA Kang-sheng1, 2*, TANG Qiu-ling1*, LIANG Ping-zhuo1, LI Jian-hong2, GAO Xi-wu1 
1 Department of Entomology, China Agricultural University, Beijing 100193, P.R.China 
2 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究旨在明确双丙环虫酯对棉蚜的急性毒性和双丙环虫酯亚致死浓度处理对棉蚜生物学特性的影响。结果表明,双丙环虫酯对棉蚜成虫高毒,其72 h的LC50值为1.062 mg L-1。双丙环虫酯亚致死浓度(LC10)处理能够显著降低了F0代和F1代雌成虫的寿命、产蚜量及产蚜天数。同时,LC10浓度处理后,棉蚜F1代的成虫前期存活率也下降了30%。此外,与对照相比,双丙环虫酯处理后F1代若虫发育历期、成虫前期、成虫产蚜前期、总产蚜前期均显著延长。双丙环虫酯亚致死浓度处理显著降低了F1代的净繁殖率(R0)、内禀增长率(r)和周限增长率(λ)。这些结果表明,双丙环虫酯亚致死浓度能够显著抑制棉蚜的种群增长。本研究结果将有助于科学评估双丙环虫酯对棉蚜的影响




Abstract  The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is an important insect pest of cotton crops worldwide.  The objectives of this study were to determine the acute toxicity of afidopyropen and whether there are any effects of sublethal concentrations of afidopyropen on the biological characteristics of A. gossypii.  The results showed that afidopyropen possesses high acute toxicity to adult A. gossypii with a 72 h LC50 value of 1.062 mg L–1.  A sublethal concentration (LC10) of afidopyropen significantly decreased adult longevity, fecundity and oviposition days of female adults in both F0 and F1 generations.  The total pre-adult survival of F1 progeny was also significantly reduced by 30% at the LC10 of afidopyropen.  In addition, the nymph developmental time, pre-adult period, adult pre-reproductive period (APRP), and total pre-reproductive period (TPRP) of the F1 progeny were significantly prolonged compared with the control.  Several population parameters, including the net reproductive rate (R0), intrinsic rate of increase (r) and finite rate of increase (λ) of F1 progeny were significantly decreased by a sublethal afidopyropen concentration exposure.  These results indicated that sublethal concentration of afidopyropen can significantly suppress A. gossypii population growth.  It would be useful for assessing the overall effects of afidopyropen on A. gossypii.  
Keywords:  afidopyropen       Aphis gossypii        sublethal effects       longevity       fecundity   
Received: 23 February 2021   Accepted: 16 April 2021
Fund: This work was supported by the National Natural Science Foundation of China (31801760 and 31871997) and the Fundamental Research Funds for the Central Universities, China (2662019QD052).  
About author:  MA Kang-sheng, Mobile: +86-13611281656, E-mail: txma1986@163.com; TANG Qiu-ling, Mobile: +86-15201426099, E-mail: tangqiuling1145@163.com; Correspondence GAO Xi-wu, Tel: +86-10-62732974, E-mail: gaoxiwu@263.net.cn * These authors contributed equally to this study.

Cite this article: 

MA Kang-sheng, TANG Qiu-ling, LIANG Ping-zhuo, LI Jian-hong, GAO Xi-wu. 2022. A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Journal of Integrative Agriculture, 21(7): 2055-2064.

Bass C, Denholm I, Williamson M S, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121, 78–87.
Blackman R L, Eastop V F. 1984. Aphids on the World’s Crops: An Identification Guide. 2nd ed. John Wiley and Sons, Chichester, UK.
Calabrese E J, Baldwin L A. 2002. Defining hormesis. Human and Experimental Toxicology, 21, 91–97.
Cao C W, Zhang J, Gao X W, Liang P, Guo H L. 2008. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pesticide Biochemistry and Physiology, 90, 175–180.
Chen K Y, Liu X G, Wu X H, Dong F S, Xu J, Zheng Y Q. 2018. Simultaneous determination of afidopyropen and its metabolite in vegetables, fruit and soil using UHPLC-MS/MS. Food Additives and Contaminants (Part A: Chemistry Analysis Control Exposure & Risk Assessment), 35, 715–722.
Chen X D, Ashfaq M, Stelinski L L. 2018. Susceptibility of Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), to the insecticide afidopyropen: A new and potent modulator of insect transient receptor potential channels. Applied Entomology and Zoology, 53, 453–461.
Chen X W, Li F, Chen A Q, Ma K S, Liang P Z, Liu Y, Song D L, Gao X W. 2017a. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. Pesticide Biochemistry and Physiology, 141, 1–8.
Chen X W, Ma K S, Li F, Liang P Z, Liu Y, Guo T F, Song D L, Desneux N, Gao X W. 2016. Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology, 25, 1841–1848.
Chen X W, Tie M Y, Chen A Q, Ma K S, Li F, Liang P Z, Liu Y, Song D L, Gao X W. 2017b. Pyrethroid resistance associated with M918L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China. Pest Management Science, 73, 2353–2359.
Chen Y J, Guo M C, Liu X G, Xu J, Dong F S, Wu X H, Li B T, Zheng Y Q. 2018. Determination and dissipation of afidopyropen and its metabolite in wheat and soil using QuEChERS-UHPLC-MS/MS. Journal of Separation Science, 41, 1674–1681.
Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.
Chi H. 2021. TWOSEX-MS Chart: A computer program for the age-stage, two-sex life table analysis. [2021-04-22]. http://140.120.197.173/Ecology
Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 24, 225–240.
Cohen E. 2006. Pesticide-mediated homeostatic modulation in arthropods. Pesticide Biochemistry and Physiology, 85, 21–27. 
Cutler G C. 2013. Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response, 11, 154–177.
Desneux N, Decourtye A, Delpuech J M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.
Desneux N, Fauvergue X, Dechaume-Moncharmont F X, Kerhoas L, Ballanger Y, Kaiser L. 2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology, 98, 9–17.
Ebadollahi A, Davari M, Razmjou J, Naseri B. 2017. Separate and combined effects of Mentha piperata and Mentha pulegium essential oils and a pathogenic fungus Lecanicillium muscarium against Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology, 110, 1025–1030.
Efron B, Tibshirani R J. 1993. An introduction to the bootstrap. In: Monographs on Statistics and Applied Probability. Chapman and Hall, London. p. 436.
Gong Y H, Shi X Y, Desneux N, Gao X W. 2016. Effects of spirotetramat treatments on fecundity and carboxylesterase expression of Aphis gossypii Glover. Ecotoxicology, 25, 655–663.
Gore J, Cook D, Catchot A, Leonard B R, Stewart S D, Lorenz G, Kerns D. 2013. Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the southern united states. Journal of Economic Entomology, 106, 1430–1439.
Guedes R N, Cutler G C. 2014. Insecticide-induced hormesis and arthropod pest management. Pest Management Science, 70, 690–697.
Guedes R N, Walse S S, Throne J E. 2017. Sublethal exposure, insecticide resistance, and community stress. Current Opinion in Insect Science, 21, 47–53.
Huang H W, Chi H, Smith C L. 2018. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. Journal of Economic Entomology, 111, 1–9.
Huang Y B, Chi H. 2013. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. Journal of Applied Entomology, 137, 327–339.
Janmaat A, Borrow E, Matteoni J, Jones G. 2011. Response of a red clone of Myzus persicae (Hemiptera: Aphididae) to sublethal concentrations of imidacloprid in the laboratory and greenhouse. Pest Management Science, 67, 719–724.
Kandasamy R, London D, Stam L, von Deyn W, Zhao X L, Salgado V L, Nesterov A. 2017. Afidopyropen: new and potent modulator of insect transient receptor potential channels. Insect Biochemistry and Molecular Biology, 84, 32–39.
Kerns D L, Stewart S D. 2000. Sublethal effects of insecticides on the intrinsic rate of increase of cotton aphid. Entomologia Experimentalis et Applicata, 94, 41–49.
Koch R L, da Silva Queiroz O, Aita R C, Hodgson E W, Potter B D, Nyoike T, Ellers-Kirk C D. 2019. Efficacy of afidopyropen against soybean aphid (Hemiptera: Aphididae) and toxicity to natural enemies. Pest Management Science, 76, 375–383.
Koo H N, An J J, Park S E, Kim J I, Kim G H. 2014. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protection, 55, 91–97.
Koo H N, Lee S W, Yun S H, Kim H K, Kim G H. 2015. Feeding response of the cotton aphid, Aphis gossypii, to sublethal rates of flonicamid and imidacloprid. Entomologia Experimentalis et Applicata, 154, 110–119.
Leichter C A, Thompson N, Johnson B R, Scott J G. 2013. The high potency of ME-5343 to aphids is due to a unique mechanism of action. Pesticide Biochemistry and Physiology, 107, 169–176.
IRAC (Insecticide Resistance Action Committee). 2018. Modes of action (MoA) classification. [2020-12-1]. https://irac-online.org/modes-of-action/
Ma K S, Li F, Liang P Z, Chen X W, Liu Y, Tang Q L, Gao X W. 2017. RNA interference of Dicer-1 and Argonaute-1 increasing the sensitivity of Aphis gossypii Glover (Hemiptera: Aphididae) to plant allelochemical. Pesticide Biochemistry and Physiology, 138, 71–75.
Ma K S, Tang Q L, Zhang B Z, Liang P Z, Wang B M, Gao X W. 2019. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 157, 204–210.
Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T. 2009. Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 9, 228.
Moores G D, Gao X W, Denholm I, Devonshire A L. 1996. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii glover (Homoptera: Aphididae). Pesticide Biochemistry and Physiology, 56, 102–110.
Rongai D, Cerato C, Martelli R, Ghedini R. 1998. Aspects of insecticide resistance and reproductive biology of Aphis gossypii glover on seed potatoes. Potato Research, 41, 29–37.
Shi X, Jiang L, Wang H, Qiao K, Wang D, Wang K. 2011. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Management Science, 67, 1528–1533.
Shrestha R B, Parajulee M N. 2013. Potential cotton aphid, Aphis gossypii, population suppression by arthropod predators in upland cotton. Insect Science, 20, 778–788.
da Silva Queiroz O, Nyoike T W, Koch R L. 2020. Baseline susceptibility to afidopyropen of soybean aphid (Hemiptera: Aphididae) from the north central United States. Crop Protection, 129, 105020.
Stapel J O, Cortesero A M, Lewis W J. 2000. Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biological Control, 17, 243–249.
Stark J D, Banks J E. 2003. Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505. 
Tang Q L, Xiang M, Hu H M, An C J, Gao X W. 2015. Evaluation of sublethal effects of sulfoxaflor on the green peach aphid (Hemiptera: Aphididae) using life table parameters. Journal of Economic Entomology, 108, 2720–2728.
Wang D, Xie N, Yi S, Liu C, Jiang H, Ma Z, Feng J, Yan H, Zhang X. 2018. Bioassay-guided isolation of potent aphicidal Erythrina alkaloids against Aphis gossypii from the seed of Erythrina crista-galli L. Pest Management Science, 74, 210–218
Wang S Y, Qi Y F, Desneux N, Shi X Y, Biondi A, Gao X W. 2017. Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. Journal of Pest Science, 90, 389–396.
Wei M F, Chi H, Guo Y F, Li X W, Zhao L L, Ma R Y. 2020. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. Journal of Economic Entomology, 113, 2343–2353.
Wu K M, Guo Y Y. 2005. The evolution of cotton pest management practices in China. Annual Review of Entomology, 50, 31–52.
Yuan H B, Li J H, Liu Y Q, Cui L, Lu Y H, Xu X Y, Li Z, Wu K M, Desneux N. 2017. Lethal, sublethal and transgenerational effects of the novel chiral neonicotinoid pesticide cycloxaprid on demographic and behavioral traits of Aphis gossypii (Hemiptera: Aphididae). Insect Science, 24, 743–752.
Zheng B Z, Gao X W, Wang Z G, Liang T T, Cao B J, Gao H. 1989. Resistant mechanism of organophosphorous and carbamate insecticides in Aphis gossypii Glov. Acta Phytophylacica Sinica, 16, 131–138. (in Chinese)

[1] DAI Wei, LI Yao, ZHU Jun, GE Lin-quan, YANG Guo-qing, LIU Fang. Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae)[J]. >Journal of Integrative Agriculture, 2019, 18(1): 124-133.
[2] HU Bin, MO De-lin, WANG Xiao-ying, LIU Xiao-hong, CHEN Yao-sheng. Effects of back fat, growth rate, and age at first mating on Yorkshire and Landrace sow longevity in China[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2809-2818.
[3] ZHANG Yi-bo, LU Shu-long, LIU Wan-xue, WANG Wen-xia, WANG Wei , WAN Fang-hao. Comparing Immature Development and Life History Traits in Two Coexisting Host-Feeding Parasitoids, Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae)[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2690-2700.
No Suggested Reading articles found!