Cassava MeRS40 is required for the regulation of plant salt tolerance
Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress. We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses. However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored. In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions. Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses. Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes. However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA. Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively. Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants.
The liver is a vital organ in chickens that performs a number of crucial physiological functions, including the storage of hepatic glycogen, protein synthesis, detoxification, and deoxidation. The growth and metabolism of the liver are complex processes influenced by factors such as environment, diet, and genetics. MicroRNAs (miRNAs), as post-transcriptional regulatory molecules, play a role in various biological processes. There is growing evidence that miR-27b-5p plays a key role in the regulation of liver development and metabolism in various species. However, its role in chicken livers has yet to be determined. In our experiment, we found that chickens with fatty livers had significantly higher levels of serum triglyceride (TG) and total cholesterol (TC) compared to the normal chickens, while the control group had significantly higher levels of very low-density lipoprotein (VLDL) and serum hormones. Further research showed that the mRNA of miR-27b-5p was highly expressed in fatty livers. By exploring the function of miR-27b-5p in chicken livers, we discovered that it promotes lipogenesis, oxidative stress, and inflammatory responses, leading to hepatocyte apoptosis. Our study also established the mechanism by which miR-27b-5p interacts with its target gene, and found that miR-27b-5p targets insulin receptor substrate 2 (IRS2) and modulates the PI3K/AKT signaling pathway. Additionally, our investigation of IRS2 in chicken hepatocytes revealed that knocking down IRS2 has the same effects as overexpressing miR-27b-5p. In conclusion, our study revealed that miR-27b-5p directly binds to IRS2, inhibiting the PI3K/AKT signaling pathway and causing steatosis, oxidative stress, inflammation, and apoptosis in chicken liver.
Potato is one of the staple food crops in North China. However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation. Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China. However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region. Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China. Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively. Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions. The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level. Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China. Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.
Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits. However, the appropriate amount of straw to substitute for fertilizer remains unclear. A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting. Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice. Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization. Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization. Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components. Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.