Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.
WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei
2023, 22 (7): 2000-2014.   DOI: 10.1016/j.jia.2022.10.007
Abstract291)      PDF in ScienceDirect      
Plant architecture and leaf color are important factors influencing cotton fiber yield. In this study, based on genetic analysis, stem paraffin sectioning, and phytohormone treatments, we showed that the dwarf-red (DR) cotton mutant is a gibberellin-sensitive mutant caused by a mutation in a single dominant locus, designated GhDR. Using bulked segregant analysis (BSA) and genotyping by target sequencing (GBTS) approaches, we located the causative mutation to a ~197-kb genetic interval on chromosome A09 containing 25 annotated genes. Based on gene annotation and expression changes between the mutant and normal plants, GH_A09G2280 was considered to be the best candidate gene responsible for the dwarf and red mutant phenotypes. A 2-nucleotide deletion was found in the coding region of GhDR/GH_A09G2280 in the DR mutant, which caused a frameshift and truncation of GhDR. GhDR is a homolog of Arabidopsis AtBBX24, and encodes a B-box zinc finger protein. The frameshift deletion eliminated the C-terminal nuclear localization domain and the VP domain of GhDR, and altered its subcellular localization. A comparative transcriptome analysis demonstrated downregulation of the key genes involved in gibberellin biosynthesis and the signaling transduction network, as well as upregulation of the genes related to gibberellin degradation and the anthocyanin biosynthetic pathway in the DR mutant. The results of this study revealed the potential molecular basis by which plant architecture and anthocyanin accumulation are regulated in cotton.  

Reference | Related Articles | Metrics
Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22
LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong
2023, 22 (7): 1985-1999.   DOI: 10.1016/j.jia.2022.12.002
Abstract301)      PDF in ScienceDirect      
The identification of stable quantitative trait locus (QTL) for yield-related traits and tightly linked molecular markers is important for improving wheat grain yield. In the present study, six yield-related traits in a recombinant inbred line (RIL) population derived from the Zhongmai 578/Jimai 22 cross were phenotyped in five environments. The parents and 262 RILs were genotyped using the wheat 50K single nucleotide polymorphism (SNP) array. A high-density genetic map was constructed with 1 501 non-redundant bin markers, spanning 2 384.95 cM. Fifty-three QTLs for six yield-related traits were mapped on chromosomes 1D (2), 2A (9), 2B (6), 2D, 3A (2), 3B (2), 4A (5), 4D, 5B (8), 5D (2), 7A (7), 7B (3) and 7D (5), which explained 2.7–25.5% of the phenotypic variances. Among the 53 QTLs, 23 were detected in at least three environments, including seven for thousand-kernel weight (TKW), four for kernel length (KL), four for kernel width (KW), three for average grain filling rate (GFR), one for kernel number per spike (KNS) and four for plant height (PH). The stable QTLs QKl.caas-2A.1, QKl.caas-7D, QKw.caas-7D, QGfr.caas-2B.1, QGfr.caas-4A, QGfr.caas-7A and QPh. caas-2A.1 are likely to be new loci. Six QTL-rich regions on 2A, 2B, 4A, 5B, 7A and 7D, showed pleiotropic effects on various yield traits. TaSus2-2B and WAPO-A1 are potential candidate genes for the pleiotropic regions on 2B and 7A, respectively. The pleiotropic QTL on 7D for TKW, KL, KW and PH was verified in a natural population. The results of this study enrich our knowledge of the genetic basis underlying yield-related traits and provide molecular markers for high-yield wheat breeding.
Reference | Related Articles | Metrics

Cassava MeRS40 is required for the regulation of plant salt tolerance

MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu
2023, 22 (5): 1396-1411.   DOI: 10.1016/j.jia.2023.04.003
Abstract318)      PDF in ScienceDirect      

Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress.  We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses.  However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored.  In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions.  Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses.  Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes.  However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA.  Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively.  Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants. 

Reference | Related Articles | Metrics
miR-27b-5p regulates chicken liver disease via targeting IRS2 to suppress the PI3K/AKT signal pathway
ZHAO Jing, WU Ya-mei, ZHANG Yao, TANG Shu-yue, HAN Shun-shun, CUI Can, TAN Bo, YU Jie, KANG Hou-yang, CHEN Guang-deng, MA Meng-gen, ZHU Qing, YIN Hua-dong
2023, 22 (11): 3500-3516.   DOI: 10.1016/j.jia.2023.04.010
Abstract220)      PDF in ScienceDirect      

The liver is a vital organ in chickens that performs a number of crucial physiological functions, including the storage of hepatic glycogen, protein synthesis, detoxification, and deoxidation.  The growth and metabolism of the liver are complex processes influenced by factors such as environment, diet, and genetics.  MicroRNAs (miRNAs), as post-transcriptional regulatory molecules, play a role in various biological processes.  There is growing evidence that miR-27b-5p plays a key role in the regulation of liver development and metabolism in various species.  However, its role in chicken livers has yet to be determined.  In our experiment, we found that chickens with fatty livers had significantly higher levels of serum triglyceride (TG) and total cholesterol (TC) compared to the normal chickens, while the control group had significantly higher levels of very low-density lipoprotein (VLDL) and serum hormones.  Further research showed that the mRNA of miR-27b-5p was highly expressed in fatty livers.  By exploring the function of miR-27b-5p in chicken livers, we discovered that it promotes lipogenesis, oxidative stress, and inflammatory responses, leading to hepatocyte apoptosis.  Our study also established the mechanism by which miR-27b-5p interacts with its target gene, and found that miR-27b-5p targets insulin receptor substrate 2 (IRS2) and modulates the PI3K/AKT signaling pathway.  Additionally, our investigation of IRS2 in chicken hepatocytes revealed that knocking down IRS2 has the same effects as overexpressing miR-27b-5p.  In conclusion, our study revealed that miR-27b-5p directly binds to IRS2, inhibiting the PI3K/AKT signaling pathway and causing steatosis, oxidative stress, inflammation, and apoptosis in chicken liver.

Reference | Related Articles | Metrics
Optimizing water management practice to increase potato yield and water use efficiency in North China
LI Yang, WANG Jing, FANG Quan-xiao, HU Qi, HUANG Ming-xia, CHEN Ren-wei, ZHANG Jun, HUANG Bin-xiang, PAN Zhi-hua, PAN Xue-biao
2023, 22 (10): 3182-3192.   DOI: 10.1016/j.jia.2023.04.027
Abstract141)      PDF in ScienceDirect      

Potato is one of the staple food crops in North China.  However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.  Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.  However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.  Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China.  Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively.  Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions.  The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level.  Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China.  Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.

Reference | Related Articles | Metrics
From statistics to grids: A two-level model to simulate crop pattern dynamics
XIA Tian, WU Wen-bin, ZHOU Qing-bo, Peter H. VERBURG, YANG Peng, HU Qiong, YE Li-ming, ZHU Xiao-juan
2022, 21 (6): 1786-1789.   DOI: 10.1016/S2095-3119(21)63713-9
Abstract233)      PDF in ScienceDirect      
Crop planting patterns are an important component of agricultural land systems.  These patterns have been significantly changed due to the combined impacts of climatic changes and socioeconomic developments.  However, the extent of these changes and their possible impacts on the environment, terrestrial landscapes and rural livelihoods are largely unknown due to the lack of spatially explicit datasets including crop planting patterns.  To fill this gap, this study proposes a new method for spatializing statistical data to generate multitemporal crop planting pattern datasets.  This method features a two-level model that combines a land-use simulation and a crop pattern simulation.  The output of the first level is the spatial distribution of the cropland, which is then used as the input for the second level, which allocates crop censuses to individual gridded cells according to certain rules.  The method was tested using data from 2000 to 2019 from Heilongjiang Province, China, and was validated using remote sensing images.  The results show that this method has high accuracy for crop area spatialization.  Spatial crop pattern datasets over a given time period can be important supplementary information for remote sensing and thus support a wide range of application in agricultural land systems.
Reference | Related Articles | Metrics
The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development
WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong
2022, 21 (5): 1444-1456.   DOI: 10.1016/S2095-3119(21)63826-1
Abstract189)      PDF in ScienceDirect      
As an emerging class of non-coding transcripts, circular RNAs (circRNAs) are proved to participate in the complex process of myogenesis in diverse species.  A previous study has identified circular RNA EDC3 (circEDC3) as a typical covalently closed circular RNA abundant in chicken skeletal muscle.  This study found that circEDC3 is a conservative circular RNA and performed functional analysis to investigate the role of circEDC3 in chicken muscle growth.  The results indicated that circEDC3 could inhibit (P<0.05) chicken skeletal muscle satellite cells (SMSCs) proliferation and differentiation but had no significant influence on SMSCs apoptosis.  Additionally, bioinformatics analysis showed that circEDC3 had promising coding potential.  The open reading frames (ORF) were found in circEDC3 in this study.  Furthermore, this study predicted that circEDC3 had internal ribosome entry sites (IRES) and N6-methyladenosine (m6A) motifs in different species, implying that circEDC3 might be translatable.  This study revealed that circEDC3 might be a negative regulator in chicken muscle development and suggested it has protein-coding potential in different species.
Reference | Related Articles | Metrics
Comprehensive evaluation of 20 pomegranate (Punica granatum L.) cultivars in China 
CHEN Yan-hui, GAO Hui-fang, WANG Sa, LIU Xian-yan, HU Qing-xia, JIAN Zai-hai, WAN Ran, SONG Jin-hui, SHI Jiang-li
2022, 21 (2): 434-445.   DOI: 10.1016/S2095-3119(20)63389-5
Abstract208)      PDF in ScienceDirect      
Recent investigations on pomegranate products have significantly increased and successfully drawn consumers’ attention to nutritional and medicinal values, promoting the pomegranate industry’s development worldwide.  However, little information on pomegranates grown in China is available.  Morphological and chemical characterizations of fruits and arils from 20 pomegranate cultivars in six regions of China were investigated.  Combined with overall scores by principal component analysis, ‘Yushiliu No. 1’, ‘Taishanhong No. 2’, ‘Tunisia’ and ‘Mollar’ were promising cultivars, and Chinese researchers bred the first two.  It was surprising that ‘Mollar’ had bigger fruit size and more aril moisture grown in China than in Spain.  Cultivars with higher anthocyanin content in arils were ‘Turkey’, ‘Moyu’ and ‘Red Angel’, which might be used as the source of natural red food colourants.  While red husk ‘Hongruyi’ and ‘Hongshuangxi’ with higher vitamin C, aril moisture and lower titratable acid in arils, might also be promising cultivars for further various utilization.  Furthermore, the comparison of ‘Tunisia’ fruits from four regions revealed that cultivation locations had more influence on fruit traits than genotypes.  Maturity index classification was established for Chinese pomegranate cultivars.  Therefore, the results would provide a valuable guide for agricultural cultivation, industrial utilization, and breeding. 
Reference | Related Articles | Metrics
Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration
XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun
2022, 21 (11): 3345-3355.   DOI: 10.1016/j.jia.2022.08.059
Abstract363)      PDF in ScienceDirect      

Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.  However, the appropriate amount of straw to substitute for fertilizer remains unclear.  A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting.  Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice.  Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization.  Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization.  Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components.  Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.

Reference | Related Articles | Metrics
Impacts of climate change on drought risk of winter wheat in the North China Plain
ZHANG Li, CHU Qing-quan, JIANG Yu-lin, CHEN Fu, LEI Yong-deng
2021, 20 (10): 2601-2612.   DOI: 10.1016/S2095-3119(20)63273-7
Abstract196)      PDF in ScienceDirect      
Drought is a major natural disaster causing crop yield losses, while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear. Based on a long-term climatic dataset (during 1958–2015) from weather stations in the North China Plain (NCP), the influencing mechanism of various climatic factors on drought risk of winter wheat was quantified by using sensitivity analysis, Mann-Kendall trend test and slope estimation. The results indicated that climatic factors have changed considerably over the past six decades in the growth season of winter wheat. As a result, winter wheat suffered from severe droughts (with 350 mm of water deficit during its growth season), particularly at the jointing–heading and heading–mature stages, which were critical to crop yield formation. There were large spatial and temporal variations in drought risk and climatic change factors at different growth stages of winter wheat. Despite precipitation playing a vital role in determining the spatiotemporal patterns of drought risk, high temperature and low humidity along with other climatic factors at key growth stages of winter wheat aggravated drought risk. Particularly, temperature at nearly 90% weather stations showed a notablely upward trend, which exacerbated water deficit and drought risk of winter wheat. Given the complexity and high uncertainty of climate change, these findings provide important information for adapting crop production to future climate change and accompanied droughts while ensuring food security and agricultural sustainability.
Reference | Related Articles | Metrics
Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China
SHAN Nan, WANG Pu-tao, ZHU Qiang-long, SUN Jing-yu, ZHANG Hong-yu, LIU Xing-yue, CAO Tian-xu, CHEN Xin, HUANG Ying-jin, ZHOU Qing-hong
2020, 19 (11): 2839-2848.   DOI: 10.1016/S2095-3119(20)63270-1
Abstract179)      PDF in ScienceDirect      
China is an important domestication center of yams, and two main yam species of Dioscorea opposita and D. alata are commonly cultivated in China.  However, the differences of nutritional and medicinal characteristics between the two species and their subgroups remain unclear, which would greatly affect the resource conservation and commercial utilization of yams.  In this study, typical yam resources including the species of D. opposita (wild and cultivated Ruichang yam from southern China, and Tiegun yam from northern China) and two landraces of D. alata (Longyan yam and Anyuan yam from southern China) were selected as materials.  Nutritional traits and medicinal characteristics were determined and analyzed respectively.  The results showed that there was no significant differences in the content of most nutrients between D. opposita and D. alata, but most cultivated Ruichang yam of D. opposita showed higher levels of starch, soluble sugar, sucrose, and ascorbate in tuber than that in yam from D. alata.  Moreover, an UPLC-MS method was developed for identification and determination of medicinal characteristics in the two species.  The results showed that allantoin can be detected in all selected samples.  Cultivated Ruichang yam of D. opposita possessed the highest allantoin content among the tested materials, and was significantly different with that in Tiegun yam and D. alata. Dioscin was not detected in D. alata. Overall, there was little difference in nutritional composition between D. opposita and D. alata, but the medicinal quality of D. opposita was better than that of D. alata.  Due to the outstanding comprehensive quality, the local variety of cultivated Ruichang yam can be further developed and utilized.
Reference | Related Articles | Metrics
First detection and complete genome of Soybean chlorotic mottle virus naturally infecting soybean in China by deep sequencing
HU Qian-qian, LIU Xue-jian, HAN Xue-dong, LIU Yong, JIANG Jun-xi, XIE Yan
2019, 18 (11): 2664-2667.   DOI: 10.1016/S2095-3119(19)62665-1
Abstract102)      PDF in ScienceDirect      
Soybean chlorotic mottle virus (SbCMV) was first detected from soybean plants in Jiangxi Province of China by high throughput sequencing and was confirmed by PCR.  The complete nucleotide sequence of NC113 was determined to be 8 210 nucleotides, and shared the highest similarity (91.7%) with sequences of SbCMV that was only reported in Japan.  It encodes nine putative open reading frames (ORFs Ia, Ib and II–VIII), and contains a large intergenic region located at nucleotide 5 976–6 512 between ORFs VI and VII.  Sequence analysis and phylogenetic tree indicated that NC113 is an isolate of SbCMV, and is more related to the soymoviruses Blueberry red ringspot virus (BRRSV), Peanut chlorotic streak virus (PCSV) and Cestrum yellow leaf curling virus (CmYLCV) than to other representative members in the Caulimoviridae family.  Field survey of 472 legume plants from Jiangxi and Zhejiang provinces showed SbCMV was only detected from soybean in Nanchang City with a low incidence rate.  This is the first report of Soybean chlorotic mottle virus identified in China.
Reference | Related Articles | Metrics
Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system
ZHOU Xing, LU Yan-hong, LIAO Yu-lin, ZHU Qi-dong, CHENG Hui-dan, NIE Xin, CAO Wei-dong, NIE Jun
2019, 18 (10): 2381-1392.   DOI: 10.1016/S2095-3119(18)62096-9
Abstract212)      PDF in ScienceDirect      
The double-rice cropping system is a very important intensive cropping system for food security in China.  There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv).  We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha–1).  Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively).  It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve.  The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100.  However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%.  Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40.  After a certain amount of Mv input (22.5 Mg ha–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass.  Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0.  Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.
Reference | Related Articles | Metrics
Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies
ZHU Qian, KONG Ling-jian, SHAN Yu-zi, YAO Xing-dong, ZHANG Hui-jun, XIE Fu-ti, AO Xue
2019, 18 (10): 2242-2254.   DOI: 10.1016/S2095-3119(19)62563-3
Abstract142)      PDF in ScienceDirect      
This study was conducted with two soybean cultivars, Liaodou 13 (L13, phosphorus (P)-efficient) and Tiefeng 3 (T3, P-inefficient), to investigate the effects of biochar on soybean yield and photosynthetic physiological parameters, at four biochar application rates (0, 1, 5, and 10%, w/w), and two fertilization treatments (0 and 150 kg ha–1).  Grain yield, plant biomass, P accumulation, leaf net photosynthetic rate (Pn), chlorophyll index (Chl), nitrogen balance index (NBI), sucrose phosphate synthase (SPS), and sucrose synthase (SS) activities, soluble sugar, sucrose and starch contents, and leaf area duration (LAD) were measured.  Biochar had positive effects on Pn, Chl, NBI, SPS, and SS activities, and leaf soluble sugar, sucrose, and starch contents of both genotypes, these effects increased with biochar application rate.  L13 benefited more efficiently from biochar than T3 did, as the grain yield of L13 significantly increased by 31.0 and 51.0%, at 5 and 10% biochar, respectively, while that of T3 increased by 40.4 at 10% biochar application rate, as compared with controls.  The combined application of biochar and fertilizer boosted the positive effects described, but no difference was found for grain yield in L13 among biochar application rates, while grain yield of T3 continually increased with biochar rate, among which, 1% biochar combined with 150 kg ha–1 fertilizer resulted in T3 yield increment of more than 23%, compared with the application of 150 kg ha–1 fertilizer alone.  Altogether, our results indicated that the application of biochar enhanced carbon assimilation in soybean, resulting in increased biomass accumulation and yield.  Differences in genotypic responses to biochar highlight the need to consider specific cultivars and biochar rate, when evaluating the potential responses of crops to biochar.
 
Reference | Related Articles | Metrics
Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis)
SUN Ping, ZHANG Zhen-lu, ZHU Qiu-fang, ZHANG Guo-ying, XIANG Ping, LIN Yu-ling, LAI Zhongxiong, LIN Jin-ke
2018, 17 (05): 1154-1164.   DOI: 10.1016/S2095-3119(17)61654-X
Abstract1175)      PDF in ScienceDirect      
MicroRNAs (miRNAs) are endogenous non-protein-coding small RNAs that play crucial and versatile regulatory roles in plants.  Using a computational identification method, we identified 55 conserved miRNAs in tea (Camellia sinensis) by aligning miRNA sequences of different plant species with the transcriptome library of tea strain 1005.  We then used quantitative real-time PCR (qRT-PCR) to analyze the expression of 31 identified miRNAs in tea leaves of different ages, thereby verifying the existence of these miRNAs and confirming the reliability of the computational identification method.  We predicted which miRNAs were involved in catechin synthesis using psRNAtarget Software based on conserved miRNAs and catechin synthesis pathway-related genes.  Then, we used RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) to obtain seven miRNAs cleaving eight catechin synthesis pathway-related genes including chalcone synthase (CHS), chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR), and flavanone 3-hydroxylase (F3H).  An expression analysis of miRNAs and target genes revealed that miR529d and miR156g-3p were negatively correlated with their targets CHI and F3H, respectively.  The expression of other miRNAs was not significantly related to their target genes in the catechin synthesis pathway.  The RLM-RACE results suggest that catechin synthesis is regulated by miRNAs that can cleave genes involved in catechin synthesis. 
Reference | Related Articles | Metrics
Mapping regional cropping patterns by using GF-1 WFV sensor data
SONG Qian, ZHOU Qing-bo, WU Wen-bin, HU Qiong, LU Miao, LIU Shu-bin
2017, 16 (02): 337-347.   DOI: 10.1016/S2095-3119(16)61392-8
Abstract1012)      PDF in ScienceDirect      
The successful launched Gaofen satellite no. 1 wide field-of-view (GF-1 WFV) camera is characterized by its high spatial resolution and may provide some potential for regional crop mapping.  This study, taking the Bei’an City, Northeast China as the study area, aims to investigate the potential of GF-1 WFV images for crop identification and explore how to fully use its spectral, textural and temporal information to improve classification accuracy.  In doing so, an object-based and Random Forest (RF) algorithm was used for crop mapping.  The results showed that classification based on an optimized single temporal GF-1 image can achieve an overall accuracy of about 83%, and the addition of textural features can improve the accuracy by 8.14%.  Moreover, the multi-temporal GF-1 data can produce a classification map of crops with an overall accuracy of 93.08% and the introduction of textural variables into multi-temporal GF-1 data can only increase the accuracy by about 1%, which suggests the importance of temporal information of GF-1 for crop mapping in comparison with single temporal data.  By comparing classification results of GF-1 data with different feature inputs, it is concluded that GF-1 WFV data in general can meet the mapping efficiency and accuracy requirements of regional crop.  But given the unique spectral characteristics of the GF-1 WFV imagery, the use of textual and temporal information is needed to yield a satisfactory accuracy.
Reference | Related Articles | Metrics
How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?
HU Qiong, WU Wen-bin, SONG Qian, LU Miao, CHEN Di, YU Qiang-yi, TANG Hua-jun
2017, 16 (02): 324-336.   DOI: 10.1016/S2095-3119(15)61321-1
Abstract1039)      PDF in ScienceDirect      
How to fully use spectral and temporal information for efficient identification of crops becomes a crucial issue since each crop has its specific seasonal dynamics.  A thorough understanding on the relative usefulness of spectral and temporal features is thus essential for better organization of crop classification information.  This study, taking Heilongjiang Province as the study area, aims to use time-series moderate resolution imaging spectroradiometer (MODIS) surface reflectance product (MOD09A1) data to evaluate the importance of spectral and temporal features for crop classification.  In doing so, a feature selection strategy based on separability index (SI) was first used to rank the most important spectro-temporal features for crop classification.  Ten feature scenarios with different spectral and temporal variable combinations were then devised, which were used for crop classification using the support vector machine and their accuracies were finally assessed with the same crop samples.  The results show that the normalized difference tillage index (NDTI), land surface water index (LSWI) and enhanced vegetation index (EVI) are the most informative spectral features and late August to early September is the most informative temporal window for identifying crops in Heilongjiang for the observed year 2011.  Spectral diversity and time variety are both vital for crop classification, and their combined use can improve the accuracy by about 30% in comparison with single image.  The feature selection technique based on SI analysis is superior for achieving high crop classification accuracy (producers’ accuracy of 94.03% and users’ accuracy of 93.77%) with a small number of features.  Increasing temporal resolution is not necessarily important for improving the classification accuracies for crops, and a relatively high classification accuracy can be achieved as long as the images associated with key phenological phrases are retained.
Reference | Related Articles | Metrics
The production relationship of destruxins and blastospores of Metarhizium anisopliae with virulence against Plutella xylostella
DONG Ting-yan, ZHANG Bo-wen, WENG Qun-fang, HU Qiong-bo
2016, 15 (06): 1313-1320.   DOI: 10.1016/S2095-3119(15)61322-3
Abstract1204)      PDF in ScienceDirect      
   Metarhizium anisopliae as an essential entomopathogenic fungus has been known to produce destruxins (a kind of cyclo-peptidic mycotoxins) and blastospores in submerged culture. Blastospores and destruxins are candidates for insecticides, but the relations of both productions and the impact factors are unclear yet. In this study, we investigated the effects of inoculums, rotation, dissolved oxygen (DO) on the productions of blastospores and destruxins A and B (DA and DB) in submerged culture of M. anisopliae strain MaQ01. The results indicated that DO levels were regulated by inoculum amounts and rotation speeds, meanwhile, the productions of DA, DB and blastospores were also closely influenced by those factors. Totally, when DO value was more than 40%, the higher productions of destruxins and blastospores were achieved, by contrast, lower than 40% of DO values resulted in lower productions. The regression analysis suggested that the productions of DA, DB and blastospores were positively correlated with the DO levels. Meanwhile, the positive correlations between the productions of DA or DB and blastospores were also found. Briefly, when the rotation is 150 r min–1 and the inoculum is 1.0×106 spore mL–1, the DA, DB and blastospores achieved the best production of 61.81 mg mL–1, 24.74 mg mL–1 and 5.73×106 spore mL–1, respectively. In addition, the pathogenicities of blastospores and conidia against Plutella xylostella were bioassayed. The higher mortalities of P. xylostella were totally recorded in blastospore treatments than in conidia treatments, especially in lower dosages and earlier periods. Our research will give some new insights to production of destruxins and blastospores by using M. anisopliae.  
Reference | Related Articles | Metrics
Applying a salinity response function and zoning saline land for three field crops: a case study in the Hetao Irrigation District, Inner Mongolia, China
TONG Wen-jie1, CHEN Xiao-li2, WEN Xin-ya1, CHEN Fu1, ZHANG Hai-lin1, CHU Qing-quan1, Shadrack Batsile Dikgwatlhe1
2015, 14 (1): 178-189.   DOI: 10.1016/S2095-3119(14)60761-9
Abstract1895)      PDF in ScienceDirect      
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.
Reference | Related Articles | Metrics
Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain
HUANG Ping, ZHANG Jia-bao, XIN Xiu-li, ZHU An-ning, ZHANG Cong-zhi, MA Dong-hao, ZHU Qiang-gen, YANG Shan, WU Sheng-jun
2015, 14 (1): 148-157.   DOI: 10.1016/S2095-3119(14)60750-4
Abstract1789)      PDF in ScienceDirect      
Cropland productivity has been significantly impacted by soil acidification resulted from nitrogen (N) fertilization, especially as a result of excess ammoniacal N input. With decades’ intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidification rates of different soil layers in the soil profile (0–120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0–20 cm) pH changes of a long-term fertilization field (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied significantly in the soil profile, averaged 692 and 39.8 mmolc kg–1 pH–1, respectively. A significant (P<0.05) correlation was found between pHBC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha–1 yr–1), the induced proton input in this region was predicted to be 16.1 kmol ha–1 yr–1, and nitrification and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidification rate of topsoil (0–20 cm) was estimated to be 0.01 unit pH yr–1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0–20 cm) of the long-term fertilization field decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha–1 yr–1; phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1), respectively. Therefore, the apparent soil acidification rate induced by N fertilization equaled to 0.01 unit pH yr–1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, field management and plant uptake of other nutrients and cations. As protons could be consumed by some field practices, such as stubble return and coupled water and nutrient management, soil pH would maintain relatively stable if proper management practices can be adopted in this region.
Reference | Related Articles | Metrics
Mapping QTLs Affecting Economic Traits on BTA3 in Chinese Holstein with Microsatellite Markers
QIN Chun-hua, CHU Qin, CHU Gui-yan, ZHANG Yi, ZHANG Qin, ZHANG Sheng-li , SUN Dong-xiao
2014, 13 (9): 1999-2004.   DOI: 10.1016/S2095-3119(13)60616-4
Abstract1223)      PDF in ScienceDirect      
It had been demonstrated that the strong and highly significant quantitative trait locus (QTL) can affect protein percentage on Bos Taurus Autosome 3 (BTA3) at the position 52 cM, near the microsatellite DIK4353, with the 95% confidence interval spanning from 25 to 57 cM in Chinese Holstein population using QTL-express, MQREML, and GRIDQTL softwares. This study herein focused on such region of fine mapping QTLs for milk production and functional traits with 16 microsatellite markers with coverage of 33 cM between the markers BMS2904 and MB099 on BTA3 in a daughter-designed Chinese Holstein population. A total of 1 298 Holstein cows and 7 sires were genotyped for 16 microsatellites with ABI 3700 DNA sequencer. The variance components QTL linkage analysis (LA) and linkage-disequilibrium (LD) analysis (LA/LD) was performed to map QTLs for 7 traits, i.e., 305-d milk yield, fat yield, protein yield, fat percentage, protein percentage, somatic cell score and persistency of milk yield. Four strong and highly significant QTLs were detected for fat yield, fat percentage, protein percentage and somatic cell score at the position 40, 30, 27 and 26 cM, respectively. Two minor QTLs for milk yield and persistency of milk yield were identified at 42 and 46 cM, respectively. These findings provided a general idea for the fine mapping of the causal mutation for milk production and functional traits on BTA3 in the future.
Reference | Related Articles | Metrics
Putrescine Plays a Positive Role in Salt-Tolerance Mechanisms by Reducing Oxidative Damage in Roots of Vegetable Soybean
ZHANG Gu-wen, XU Sheng-chun, HU Qi-zan, MAO Wei-hua , GONG Ya-ming
2014, 13 (2): 349-357.   DOI: 10.1016/S2095-3119(13)60405-0
Abstract1801)      PDF in ScienceDirect      
Polyamines play important roles in plant tolerance to environmental stress. With the aim of investigating the possible involvement of putrescine (Put) in salt-tolerance mechanisms in vegetable soybean roots, exogenous Put (10 mmol L-1) and its biosynthetic inhibitor D-arginine (D-Arg) (0.5 mmol L-1) were added to nutrient solution when vegetable soybean (Glycine max L. cv. Huning 95-1) seedlings were exposed to 100 mmol L-1 sodium chloride (NaCl). The results showed that Put ameliorated but D-Arg aggravated the detrimental effects of NaCl on plant growth and biomass production. Under NaCl stress, levels of free, soluble conjugated and insoluble bound types of Put in roots of vegetable soybean were reduced, whereas those of free, soluble conjugated, and insoluble bound types of spermidine (Spd) and spermine (Spm) were increased. Exogenous Put eliminated the decrease in Put but promoted the increase of Spd and Spm. However, these changes could be reversed by D-Arg. Under NaCl stress, activities of arginine decarboxylase (ADC), S-adenosylmethionine decarboxylase (SAMDC), diamine oxidase (DAO), and polyamine oxidase (PAO) were induced, with exogenous Put promoting and D-Arg reversing these changes. Furthermore, NaCl stress decreased activities of antioxidant enzymes. Exogenous Put alleviated but D-Arg exaggerated these effects of NaCl stress, resulting in the same changes in membrane damage and reactive oxygen species (ROS) production. These results indicated that Put plays a positive role in vegetable soybean roots by activating antioxidant enzymes and thereby attenuating oxidative damage.
Reference | Related Articles | Metrics
Effect of Phosphorus Fertilization to P Uptake and Dry Matter Accumulation in Soybean with Different P Efficiencies
AO Xue, GUO Xiao-hong, ZHU Qian, ZHANG Hui-jun, WANG Hai-ying, MA Zhao-hui, HAN , Xiao-ri , ZHAO Ming-hui , XIE Fu-ti
2014, 13 (2): 326-334.   DOI: 10.1016/S2095-3119(13)60390-1
Abstract2376)      PDF in ScienceDirect      
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference of biomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
Reference | Related Articles | Metrics
Development of EST-PCR Markers for the Chromosome 4V of Haynaldia villosa and Their Application in Identification of 4V Chromosome Structural Aberrants
ZHAO Ren-hui, WANG Hai-yan, JIA Qi, XIAO Jin, YUAN Chun-xia, ZHANG Ya-jun, HU Qing-shan , WANG Xiu-e
2014, 13 (2): 282-289.   DOI: 10.1016/S2095-3119(13)60359-7
Abstract1671)      PDF in ScienceDirect      
EST-PCR based molecular markers specific for alien chromosomes are not only useful for the detection of the introgressed alien chromatin in the wheat background, but also provide evidence of the syntenic relationship between homoeologous chromosomes. In the present study, in order to develop high density and evenly distributed molecular markers on chromosome 4V of Haynaldia villosa, a total of 607 primer pairs were designed according to the EST sequences, which were previously located in 23 different bins of wheat chromosomes 4A, 4B and 4D. By using the Triticum durum-H. villosa amphiploid and T. aestivum-H. villosa alien chromosome lines involving chromosome 4V, it was found that 9.23% of the tested primers could amplify specific bands for chromosome 4V. Thirty and twenty-six specific markers could be assigned to chromosome arms 4VS and 4VL, respectively. These 4V specific markers provided efficient tools for the characterization of structural variation involving the chromosome 4V as well as for the selection of useful genes located on chromosome 4V in breeding programs.
Reference | Related Articles | Metrics
Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean
AO Xue, ZHAO Ming-hui, ZHU Qian, LI Jie, ZHANG Hui-jun, WANG Hai-ying, YU Cui-mei, LI Chunhong, YAO Xing-dong, XIE Fu-ti , HAN Xiao-ri
2013, 12 (7): 1173-1182.   DOI: 10.1016/S2095-3119(13)60444-X
Abstract1486)      PDF in ScienceDirect      
Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.
Reference | Related Articles | Metrics
Effects of Destruxin A on Hemocytes Morphology of Bombyx mori
FAN Ji-qiao, CHEN Xiu-run , HU Qiong-bo
2013, 12 (6): 1042-1048.   DOI: 10.1016/S2095-3119(13)60324-X
Abstract1422)      PDF in ScienceDirect      
Destruxin A (DA), a kind of cyclo-hexadepsipeptide isolated from entomopathogenic fungus, Metarhizium anisopliae, is an inhibitor of insect’s immunity. But its mechanism has not been clarified yet. In this study, the effects of DA on morphologic changes of in vivo and in vitro hemocytes of silkworm, Bombyx mori, were investigated by means of inverted phase contrast microscopy (IPCM), fluorescence microscopy (FCM) and environmental scanning electron microscopy (ESEM). The results indicated that DA was cytotoxic to granulohemocytes (GR) and plasmatocytes (PL). The LC50 values of DA against in vitro GR and PL of silkworm were 68.77 and 84.11 μg mL-1, respectively. However, the hemocytes in vivo were more susceptible to DA, although at the extremely low dose of 10 μL of 12.5 μg mL-1 for each insect (i.e., 0.036 μg g-1 body weight, or approximately 0.25 μg mL-1 hemolymph), DA could induce obviously morphologic alterations of hemocytes in vivo. The results imply that there might be some factors in silkworm’s hemolymph, which influence the interaction of DA and hemocytes.
Reference | Related Articles | Metrics
Optimization of Solid-State Fermentation with Lactobacillus brevis and Aspergillus oryzae for Trypsin Inhibitor Degradation in Soybean Meal
GAO You-ling, WANG Cai-sheng, ZHU Qiu-hua , QIAN Guo-ying
2013, 12 (5): 869-876.   DOI: 10.1016/S2095-3119(13)60305-6
Abstract1985)      PDF in ScienceDirect      
The aim of the present study was to optimize trypsin inhibitor degradation in soybean meal by solid-state fermentation (SSF) with Lactobacillus brevis and Aspergillus oryzae, and to determine the effect of SSF on phytic acid, crude protein, crude fat, and amino acid profile. Response surface methodology (RSM) with Box-Behnken design was used to optimize SSF. The optimal conditions derived from RSM for L. brevis fermentation were: pH=5.1; inoculum size=10%; duration=72 h; substrate to water ratio=1.5. The minimum content of trypsin inhibitors was 6.4 mg g-1 dry matter. The optimal conditions derived from RSM for A. oryzae fermentation were: substrate to water ratio= 0.81; inoculum size=4%; duration=120 h. The minimum content of trypsin inhibitors was 1.6 mg g-1 dry matter. Both L. brevis and A. oryzae decreased trypsin inhibitors dramatically (57.1 and 89.2% respectively). L. brevis fermentation did not affect phytic acid (0.4%) and crude fat (5.2%) considerably, whereas A. oryzae fermentation degraded phytic acid (34.8%) and crude fat (22.0%) contents to a certain extent. Crude protein content was increased after both fermentation (6.4 and 12.9% for L. brevis and A. oryzae respectively). Urease activity was reduced greatly (83.3 and 58.3% for L. brevis and A. oryzae respectively). In conclusion, SSF with A. oryzae and L. brevis reduced trypsin inhibitor content and modified major macronutrients in soybean meal.
Reference | Related Articles | Metrics
Combining Ability and Breeding Potential of Rapeseed Elite Lines for Pod Shatter Resistance
LIU Jia, MEI De-sheng, LI Yun-chang, CUI Jia-cheng, WANG Hui, PENG Peng-fei, FU Li , HU Qiong
2013, 12 (3): 552-555.   DOI: 10.1016/S2095-3119(13)60256-7
Abstract1510)      PDF in ScienceDirect      
Pod shatter resistance of rapeseed is of great importance for modern farming practice. In order to determine the combining ability of elite inbred lines and the breeding potential of rapeseed hybrids in terms of pod shatter resistance, analysis of a 6×6 incomplete diallel cross was conducted at two locations. Results showed that a significant variation existed among breeding lines and their F1 hybrids for pod shatter resistant index (SRI), pod length and width. Pod shatter resistance was significantly positively correlated with pod length. The general combining ability (GCA) effects (GCA=1.58) played a more important role than specific combining ability (SCA) effects (SCA=0.20) for pod shatter trait. The elite lines R1, 1019B and 1055B displayed significant positive GCA effects for pod shatter resistance. Four crosses (1019B×R1, 1015B×R1, 6098B×R1, and 8908B×R1) with high mean performance and positive SCA effects were recommended for developing new hybrids for mechanical harvest in the middle reaches of the Yangtze River.
Reference | Related Articles | Metrics
Genetic Diversity Analysis of Faba Bean (Vicia faba L.) Based on EST-SSR Markers
GONG Ya-ming, XU Sheng-chun, MAO Wei-hua, LI Ze-yun, HU Qi-zan, ZHANG Gu-wen and DING Ju
2011, 10 (6): 838-844.   DOI: 10.1016/S1671-2927(11)60069-2
Abstract3520)      PDF in ScienceDirect      
Faba bean (Vicia faba L.), one of the most important legumes in the world, evolved different types of cultivars due to its partial cross-pollination. The development of simple sequence repeat (SSR) markers from expressed sequence tags (EST) provided a useful tool for investigation of its genetic diversity. The purpose of the present study was to investigate the genetic diversity of faba bean from China and Europe using EST-SSR markers. 5 031 faba bean ESTs from the NCBI database were downloaded and assembled into 1 148 unigenes. A total of 107 microsatellites in 96 unigenes were identified, indicating that merely 8.36% of sequences contained SSRs. The most abundant SSR within faba bean was tri-nucleotide repeat motif, and among all the tri-nucleotide repeats, the motif AAG/CTT was the most abundant type. Based on these results, 11 EST-SSR markers were used to assess the genetic diversity of 29 faba bean cultivars from China and Europe with two to three alleles per locus. The polymorphism information content value ranged from 0.0644 to 0.4278 with an average of 0.2919. Principal coordinate analysis (PCA) and phylogenetic clustering based on these 11 EST-SSR markers distinguished these cultivars into different groups. The results indicated that faba bean in China had a narrow genetic basis, and the additional sources of genetic cultivars/accessions should be introduced to enhance the genetic variability. The results of this study proved that the EST-SSR marker is very effective in evaluation of faba bean germplasm.
Reference | Related Articles | Metrics