Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)
GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen
2023, 22 (8): 2295-2305.   DOI: 10.1016/j.jia.2023.02.006
Abstract366)      PDF in ScienceDirect      
In higher plants, the shoot apical meristem produces lateral organs in a regular spacing (phyllotaxy) and timing (plastochron).  The molecular analysis of mutants associated with phyllotaxy and plastochron would increase our understanding of the mechanism of shoot architecture formation.  In this study, we identified mutant mnd8ynp5 that shows an increased rate of leaf emergence and a larger number of nodes in combination with a dwarfed growth habit from an EMS-treated population of the elite barley cultivar Yangnongpi 5.  Using a map-based cloning strategy, the mnd8 gene was narrowed down to a 6.7-kb genomic interval on the long arm of chromosome 5H.  Sequence analysis revealed that a C to T single-nucleotide mutation occurred at the first exon (position 953) of HORVU5Hr1G118820, leading to an alanine (Ala) to valine (Val) substitution at the 318th amino acid site.  Next, HORVU5Hr1G118820 was defined as the candidate gene of MND8 encoding 514 amino acids and containing two multidrug and toxic compound extrusion (MATE) domains.  It is highly homologous to maize Bige1 and has a conserved function in the regulation of plant development by controlling the leaf initiation rate.  Examination of modern barely varieties showed that Hap-1 was the dominant haplotype and was selected in barley breeding around the world.  Collectively, our results indicated that mnd8ynp5 is a novel allele of the HORVU5Hr1G118820 gene that is possibly responsible for the shortened plastochron and many noded dwarf phenotype in barley.
Reference | Related Articles | Metrics
TaABI19 positively regulates grain development in wheat
LIU Yun-chuan, WANG Xiao-lu, HAO Chen-yang, IRSHAD Ahsan, LI Tian, LIU Hong-xia, HOU Jian, ZHANG Xue-yong
2023, 22 (1): 41-51.   DOI: 10.1016/j.jia.2022.08.049
Abstract274)      PDF in ScienceDirect      
Starch is the most important component in endosperm, and its synthesis is regulated by multiple transcription factors (TFs) in cereals. However, whether the functions of these TFs are conserved or not among cereals unclear yet. Here, we cloned a B3 family TF, named as TaABI19 based on its orthologous in maize (Zea mays L.). Alignment of DNA and protein showed that ABI19 was conserved in maize and wheat (Triticum aestivum L.). We found that TaABI19 was highly expressed in young spike and developing grains and encoded a nucleus-localized transcriptional activator in wheat. The taabi19-b1 null mutants obtained by EMS performed down-regulation of starch synthesis, shorter grain length and lower thousand grain weight (TGW). Furthermore, we provided TaABI19 could bind to the promoters of TaPBF homology genes and enhance their expression. Haplotype association showed that TaABI19-B1 was significantly associated with TGW. We found that Hap2 and Hap3 were favored and underwent positive selection in China wheat breeding. Less than fifty percent in the modern cultivars conveying favored haplotypes indicates TaABI19 still can be considered as target loci for marker-assisted selection breeding to increase TGW in China.
Reference | Related Articles | Metrics
Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China
ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min
2022, 21 (2): 521-531.   DOI: 10.1016/S2095-3119(20)63592-4
Abstract159)      PDF in ScienceDirect      
Soil aggregates are an important controlling factor for the physico-chemical and biological processes such as ammonium (NH4+) retention.  Straw return to the field is increasingly recommended to promote soil carbon (C) sequestration and improve crop yields.  However, the effects of straw return on NH4+ retention at soil aggregate level in agricultural soils have seldom been investigated.  This study aimed to evaluate the influences of long-term straw return on NH4+ adsorption and fixation in microaggregates (<0.25 mm) with or without soil organic carbon (SOC) oxidization.  Soil samples were collected from plots of three treatments, i.e., no fertilizer (CK), inorganic NPK fertilizers (NPK), and inorganic NPK fertilizers with rice straw return (NPKS), from a 20-year-old field trial with rice-wheat rotations in Taihu Lake Region, China.  Soil aggregates were separated using wet-sieving method.  The SOC of microaggregates was oxidized by H2O2.  The results showed that long-term straw return significantly increased SOC and NH4+ adsorption, but inhibited NH4+ fixation in microaggregates.  NH4+ adsorption potential and strength - obtained from adsorption isotherms - increased, but NH4+ fixation decreased along with increasing SOC in microaggregates, indicating the important role of SOC in NH4+ adsorption and fixation.  This was verified by the SOC oxidization test that showed a relative decrease in NH4+ adsorption potential for the NPKS treatment and an increase in NH4+ fixation in all three treatments.  Therefore, long-term straw return influences NH4+ adsorption and fixation by enhancing SOC content and could improve N availability for crop uptake and minimize applied N fertilizer losses in rice-wheat cropping systems.
Reference | Related Articles | Metrics
Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato
CHEN Yan-hui, XIE Bin, AN Xiu-hong, MA Ren-peng, ZHAO De-ying, CHENG Cun-gang, LI En-mao, ZHOU Jiang-tao, KANG Guo-dong, ZHANG Yan-zhen
2022, 21 (12): 3578-3588.   DOI: 10.1016/j.jia.2022.08.030
Abstract285)      PDF in ScienceDirect      

Fruit firmness is an important quality trait of apple fruit texture, and the pre-harvest ripening period is the key period for the formation of apple fruit texture.  Expansin is a cell wall loosing protein family that has four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB).  In this study, we investigated the key period of pre-harvest texture formation in ‘Golden Delicious’ apples based on fruit longitudinal diameter, transverse diameter, firmness, tissue structure, respiration intensity, ethylene release rate, and expansin activity.  Within the 10 days before harvest, the fruit was found to reach maturity.  Semi-quantitative RT-PCR revealed that most of the expansins were expressed at the ripening stage before harvest.  The biological function of the EXLB subfamily gene, MdEXLB1, was further identified, and its subcellular localization on the cell wall was confirmed by transient transformation experiments.  Compared with the wild type (WT), the transgenic tomato lines overexpressing MdEXLB1 had lower plant height, earlier fruiting period, fewer days for fruit ripening, higher fruit maturity, lower fruit firmness, higher fruit expansin activity, more discrete flesh cell structure, and accelerated fruit ripening process.  Overall, this is the first study to propose that the apple EXLB subfamily gene, MdEXLB1, has biological functions and plays an important role in promoting fruit ripening and softening.

Related Articles | Metrics
Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China
WANG Ren-jie, SONG Jia-shan, FENG Yong-tao, ZHOU Jiang-xiang, XIE Jun-yu, Asif KHAN, CHE Zong-xian, ZHANG Shu-lan, YANG Xue-yun
2021, 20 (9): 2512-2525.   DOI: 10.1016/S2095-3119(20)63482-7
Abstract177)      PDF in ScienceDirect      
Understanding the mechanism of soil organic carbon (SOC) sequestration is of paramount importance in sustaining crop productivity and mitigating climate change.  Long-term trials were employed to investigate the responses of total SOC and its pools, i.e., mineral-associated OC (MOC), particulate OC (POC, containing Light-POC and Heavy-POC), to fertilization regimes at Yangling (25-year), Tianshui (35-year) and Pingliang (37-year) under a rain-fed cropping system in the Loess Plateau.  The fertilization regimes in each trial included three treatments, i.e., control (no nutrient input, CK), chemical fertilizers (CF), and organic manure plus chemical fertilizers (MCF).  Relative to the CK, long-term fertilization appreciably increased SOC storage by 134, 89 and 129 kg ha–1 yr–1 under CF, and 418, 153 and 384 kg ha–1 yr–1 under MCF in plough layer soils (0–20 cm), respectively, at the Yangling, Tianshui and Pingliang sites.  The MOC pools accounted for 72, 67 and 64% of the total SOC at the above three sites with sequestration rates of 76, 57 and 83 kg ha–1 yr–1 under CF and 238, 118 and 156 kg ha–1 yr–1 under MCF, respectively.  Moreover, the MOC pool displayed a saturation behavior under MCF conditions.  The POC accordingly constituted 27, 33 and 36% of SOC, of which Light-POC accounted for 11, 17 and 22% and Heavy-POC for 17, 16 and 15% of SOC, respectively.  The sequestration rates of POC were 58, 32 and 46 kg ha–1 yr–1 under CF, and 181, 90 and 228 kg ha–1 yr–1 under MCF at the three respective sites, in which Light-POC explained 59, 81 and 72% of POC under CF, and 60, 40 and 69% of POC under MCF, with Heavy-POC accounting for the balance.  Compared with CK, the application of CF alone did not affect the proportions of MOC or total POC to SOC, whereas MCF application markedly reduced the proportion of MOC and increased the POC ratio, mainly in the Light-POC pool.  The distribution of SOC among different pools was closely related to the distribution and stability of aggregates.  The present study confirmed that organic manure amendment not only sequestered more SOC but also significantly altered the composition of SOC, thus improving SOC quality, which is possibly related to the SOC saturation level.
 
Reference | Related Articles | Metrics
High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars
LI Hui-xia, CHEN Zhu-jun, ZHOU Ting, LIU Yan, ZHOU Jian-bin
2018, 17 (12): 2813-2821.   DOI: 10.1016/S2095-3119(18)61949-5
Abstract362)      PDF in ScienceDirect      
Potassium (K) and magnesium (Mg) levels and their balances are two factors affecting the growth of plant.  However, the responses of different crop cultivars to K/Mg ratios are less clear.  This study was aimed at assessing the different responses of tomato (Solanum Lycopersicum L.) cultivars to the different K/Mg supply ratios.  Three tomato cultivars (Zhongza 9 (ZZ), Gailiangmaofen (MF), and Jinpengchaoguan (JP)) were grown in pots with three different K+/Mg2+ ratios (4:0, 4:1 and 8:1, represented by K/Mg4:0, K/Mg4:1, and K/Mg8:1, respectively).  Compared with K/Mg4:1 treatment, the leaf chlorophyll content, net photosynthetic rate, and total biomass of tomato seedlings under K/Mg4:0 treatments were decreased by 69.7, 89.1, and 53.1%, respectively.  The Mg deficiency symptoms were observed when the Mg content in shoot became lower than 4 mg g–1 DW.  Compared with K/Mg4:1 treatment, total biomass of tomato seedlings of K/Mg8:1 treatment was decreased by 21.6%; the shoot and root Mg contents were decreased by 10.4 and 21.8%, respectively; and Mg uptake of tomato was reduced by 34.1%.  There were significant differences in biomass and Mg uptake for the three cultivars between the different K+/Mg2+ treatments.  The Mg uptake of the three different cultivars ranked as ZZ>JP>MF under Mg deficiency and high K condition.  In conclusion, the growth and Mg uptake and allocation of tomato were influenced significantly by imbalance K and Mg supply. JP and ZZ were the cultivars with the highest efficiency in Mg uptake. 
Reference | Related Articles | Metrics
Identification and characterization of Pichia membranifaciens Hmp-1 isolated from spoilage blackberry wine
WANG Ying, ZHAO Yan-cun, FAN Lin-lin, XIA Xiu-dong, LI Ya-hui, ZHOU Jian-zhong
2018, 17 (09): 2126-2136.   DOI: 10.1016/S2095-3119(18)62027-1
Abstract416)      PDF in ScienceDirect      
The pellicle-forming yeast could cause the quality deterioration of wine.  In this study, a pellicle-forming strain Hmp-1 was isolated from the spoilage blackberry wine, and identified as Pichia membranifaciens based on the morphology and partial nucleotide sequence of 26S rDNA.  The effects of fermentation conditions (ethanol, sulfur dioxide, sugar, and temperature) on the growth of P. membranifaciens strain Hmp-1 and Saccharomyces cerevisiae strain FM-S-115 (a strain used for the blackberry wine fermentation) were investigated, respectively.  The results indicated that Hmp-1 had lower resistance to these factors compared to FM-S-115, and the growth of Hmp-1 was completely inhibited by 10% (v/v) or 50 mg L–1 SO2 during the fermentation of blackberry wine.  These results suggested that Hmp-1 could effectively be controlled by increasing ethanol or SO2 concentration during the fermentation and storage of blackberry wine.  Furthermore, the analysis based on gas chromatography-mass spectrometry (GC-MS) showed that Hmp-1 remarkably decreased kinds of volatile compounds in blackberry wine, especially aldehydes and esters.  In addition, some poisonous compounds were detected in the blackberry wine fermented by FM-S-115 and Hmp-1.  These results suggested that Hmp-1 was a major cause leading to the quality deterioration of blackberry wine.
 
Reference | Related Articles | Metrics
Reducing nitrogen fertilization of intensive kiwifruit orchards decreases nitrate accumulation in soil without compromising crop production
LU Yong-li, KANG Ting-ting, GAO Jing-bo, CHEN Zhu-jun, ZHOU Jian-bin
2018, 17 (06): 1421-1431.   DOI: 10.1016/S2095-3119(17)61899-9
Abstract460)      PDF in ScienceDirect      
Excessive nitrogen (N) fertilization of high value horticultural crops is a common problem that not only increases the cost to farmers, but also negatively affects crop growth and the environment.  A three-year field experiment was conducted in an intensive kiwifruit orchard in Shaanxi Province, China to compare the effects of reduced N fertilization applied as urea (U), and controlled release urea (CRU) on the N nutrition of kiwi vines, fruit yield and quality, and nitrate-N accumulation in the soil profile.  The three treatments included a conventional N application rate (CF-U, 900 kg N ha–1 yr–1 as urea), two reduced N fertilization treatments where the amount of N fertilizer applied as U and CRU was reduced by 25% in 2013 and 2014, and by 45% in 2015.  The 25 and 45% reduced N treatments had no adverse effects on the N concentrations in leaves and pruning branches and the fruit yield and quality of kiwi vines.  However, they significantly enhanced the partial factor productivity of applied N (PFPN) and the economic benefits, and reduced nitrate accumulation in the 0–200 cm soil profile.  The same benefits of reduced N fertilization were observed for both the U and CRU treatments, but the CRU treatment had the added benefit of decreasing the loss of nitrate through leaching.  We concluded that the current level of N fertilization in kiwi orchards is very excessive, and reducing the N fertilizer rate by 25–45% could not only guarantee fruit yield, but also reduce N accumulation and loss.
 
Reference | Related Articles | Metrics
Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field
GAO Miao, ZHOU Jian-jiao, WANG En-tao, CHEN Qian, XU Jing, SUN Jian-guang
2015, 14 (9): 1855-1863.   DOI: 10.1016/S2095-3119(14)60932-1
Abstract1700)      PDF in ScienceDirect      
Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identified as Burkholderia sp. based on 16S rDNA sequence analysis, as well as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability; inhibited the growth of Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae; and produced small quantities of indole acetic acid (IAA). In green house experiments, significant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the field experiments, Burkholderia sp. 7016 enhanced the tomato yield and significantly promoted activities of soil urease, phosphatase, sucrase, and catalase. All these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.
Reference | Related Articles | Metrics