Herbicidal activity and biochemical characteristics of the botanical drupacine against Amaranthus retroflexus L.
Botanical herbicide has been a hot topic in the research and development of novel pesticides. The herbicidal activity and biochemical characteristics of the botanical compound drupacine were studied by evaluating its effects on seed germination, seedling growth, morphological and physiological characteristics of Amaranthus retroflexus. Drupacine inhibited seed germination and seedling growth, and had a median inhibition concentration (IC50) value of 38.99 mg L−1 against A. retroflexus root. The α-amylase activity and soluble sugar content in treated plants were significantly lower than that of the control. The expression of α-amylase gene was dosage-dependently inhibited compared to the untreated control. This suggested that inhibition of α-amylase activity was a mode of action on seed germination. The root hairs were significantly decreased and part of the root cap fell off after treatment with drupacine. The ultrastructure observation showed that cell damage of root tips increased with the treatment time. Drupacine also increased the relative conductivity and malondialdehyde (MDA) content. Peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activities were significantly enhanced in the treatment compared to the control. These findings indicated that the physiological and biochemical reaction changes leading to morphological and membrane injuries were the main effects of drupacine on the inhibition of seedling growth. Drupacine can be developed as a botanical herbicide.
Transcriptional regulation of secondary metabolism and autophagy genes in response to DNA replication stress in Setosphaeria turcica
The fungal pathogen Setosphaeria turcica causes northern corn leaf blight (NCLB), which leads to considerable crop losses. Setosphaeria turcica elaborates a specialized infection structures called appressorium for maize infection. Previously, we demonstrated that the S. turcica triggers an S-phase checkpoint and ATR (Ataxia Telangiectasia and Rad3 related)-dependent self-protective response to DNA genotoxic insults during maize infection. However, how the regulatory mechanism works was still largely unknown. Here, we report a genome wide transcriptional profile analysis during appressorium formation in the present of DNA replication stress. We performed RNA-Seq analysis to identify S. tuicica genes responsive to DNA replication stress. In the current work, we found that appressorium-mediated maize infection by S. turcica is significantly blocked by S-phase checkpoint. A large serial of secondary metabolite and melanin biosynthesis genes were blocked in appressorium formation of S. turcica during the replication stress. The secondary metabolite biosynthesis genes including alcohol dehydrogenase GroES-like domain, multicopper oxidase, ABC-transporter families, cytochrome P450 and FAD-containing monooxygenase were related to plant pathogen infection. In addition, we demonstrated that autophagy in S. turcica is up-regulated by ATR as a defense response to stress. We identified StATG3, StATG4, StATG5, StATG7 and StATG16 genes for autophagy were induced by ATR-mediated S-phase checkpoint. We therefore propose that in response to genotoxic stress, S. turcica utilizes ATR-dependent pathway to turn off transcription of genes governing appressorium-mediated infection, and meanwhile inducing transcription of autophagy genes likely as a mechanism of self-protection, aside from the more conservative responses in eukaryotes.
Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins (STPs) for crossing the hydrophobic barrier in plants. Here, we systematically identified the genes encoding sugar transporters in the genome of maize (Zea mays L.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance. The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain. The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues. The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors. The expression levels of ZmSTP2 and ZmSTP20 continued to increase following Fusarium graminearum infection. By performing disease resistance analysis of zmstp2 and zmstp20 mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and F. graminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant. In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level. The expression patterns of the sugar transporter-encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions.
Botrytis cinerea is a typical necrotrophic pathogenic fungus that causes severe diseases in a wide range of plant species, leading to significant economic losses. Our previous study showed that BcSDR1 positively regulates growth, development, and pathogenicity of B. cinerea. However, the regulation mechanism of BcSDR1 and the relationship between BcSDR1 and cAMP and MAPK signaling pathways are not well understood. In this study, transcriptome data showed that BcSDR1 is involved in glucose transmembrane transport, signal transduction, secondary metabolism, and other biological processes. BcSDR1 mutant (BCt41) showed remarkably weak sensitivity to cAMP and MAPK signaling pathways specific inhibitors, SQ22536 and U0126, and significantly decreased cAMP content. The key genes of cAMP and MAPK signaling pathways, BcGB1, BcBTP1, BcBOS1, BcRAS1, and BcBMP3 were significantly upregulated, whereas BcPLC1, BcBCG1, BcCDC4, BcSAK1, BcATF1, and BcBAP1 were significantly downregulated (P<0.05). BcSDR1 was obviously upregulated in BcBCG2, BcBCG3, BcPKA1, and BcPKAR RNA interference (RNAi) mutants, but significantly downregulated in BcPKA2, BcBMP1, and BcBMP3 RNAi mutants. Thus, BcBCG2, BcBCG3, BcPKA1, and BcPKAR negatively regulate BcSDR1 expression, whereas BcPKA2, BcBMP1, and BcBMP3 positively regulate BcSDR1 expression.
Laccases, as a kind of multicopper oxidase, play an important role in pigment synthesis and growth in fungi and are involved in their interactions with host plants. In Setosphaeria turcica, 9 laccase-like multicopper oxidases have been identified, and StLAC2 is involved in the synthesis of the melanin that accumulates in the cell wall. The function of another major laccase gene, StLAC6, was studied here. The knockout of StLAC6 had no effect on the growth, morphology or invasion ability of S. turcica, but the morphology and function of peroxisomes of knockout mutants were abnormal. The knockout of the StLAC6 gene resulted in increased contents of phenolic compounds and melanin and the sensitivity to fungicides increased compared with wild type strains. In the mutants of StLAC6, there is a significant change of the expression levels of other laccase genes. This study provides a new insight into laccase functions and the relationship of the laccase gene family in plant pathogenic fungi.