Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1434-1444    DOI: 10.1016/j.jia.2022.08.120
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Herbicidal activity and biochemical characteristics of the botanical drupacine against Amaranthus retroflexus L.

YU Hua-long1*, TIAN Ci1*, SHEN Rong-yan1, ZHAO Han1, YANG Juan3, DONG Jin-gao1, 2, ZHANG Li-hui1, 2#, MA Shu-jie1, 2# 

1 College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R.China

2 State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, P.R.China

3 College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

植物源除草剂是新农药研究和开发的热点之一。桥氧三尖杉碱是从我国特有植物中国粗榧中分离鉴定的除草活性化合物,本研究测定了其对反枝苋种子萌发、幼苗生长、形态结构及生理生化特性的影响,以期为深入研究其作用机制及进一步开发利用奠定基础。生物活性测定结果显示,桥氧三尖杉碱对反枝苋种子萌发和幼苗生长均具有显著的抑制作用,对其幼根的抑制中浓度(IC50)为38.99 mg L−1;盆栽试验显示,在4 g/L浓度下,对反枝苋的苗前鲜重抑制率在85%以上。桥氧三尖杉碱处理反枝苋后的α-淀粉酶活性基因表达受剂量依赖性抑制可溶性糖含量显著低于对照,总淀粉含量显著高于对照,说明抑制α-淀粉酶活性是桥氧三尖杉碱影响反枝苋种子萌发的主要机制之一显微观察显示,经桥氧三尖杉碱处理后的反枝苋根毛数量明显减少,部分根冠脱落;超微结构观察显示,处理12 h后,根尖细胞排列紊乱,细胞结构受损,且随着处理时间的延长而加重。同时,桥氧三尖杉碱也增加了反枝苋幼苗的相对电导率,具有剂量和时间依赖性;丙二醛含量也随着处理浓度的增加而增加;过氧化物酶、过氧化氢酶和超氧化物歧化酶活性均显著高于对照。处理3 h后,桥氧三尖杉碱对反枝苋根尖过氧化物酶、过氧化氢酶和超氧化物歧化酶的活性显著升高,丙二醛含量在处理24 h后也发生改变。以上结果表明,桥氧三尖杉碱主要通过影响反枝苋防御酶系导致根尖结构受损,进而影响幼苗的生长发育。本研究首次报道了桥氧三尖杉碱对反枝苋生理生化指标及根尖形态结构的影响,可为该潜在新型植物源除草剂的进一步开发利用奠定基础。


Botanical herbicide has been a hot topic in the research and development of novel pesticides.  The herbicidal activity and biochemical characteristics of the botanical compound drupacine were studied by evaluating its effects on seed germination, seedling growth, morphological and physiological characteristics of Amaranthus retroflexus.  Drupacine inhibited seed germination and seedling growth, and had a median inhibition concentration (IC50) value of 38.99 mg L−1 against Aretroflexus root.  The α-amylase activity and soluble sugar content in treated plants were significantly lower than that of the control.  The expression of α-amylase gene was dosage-dependently inhibited compared to the untreated control.  This suggested that inhibition of α-amylase activity was a mode of action on seed germination.  The root hairs were significantly decreased and part of the root cap fell off after treatment with drupacine.  The ultrastructure observation showed that cell damage of root tips increased with the treatment time.  Drupacine also increased the relative conductivity and malondialdehyde (MDA) content.  Peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activities were significantly enhanced in the treatment compared to the control.  These findings indicated that the physiological and biochemical reaction changes leading to morphological and membrane injuries were the main effects of drupacine on the inhibition of seedling growth.  Drupacine can be developed as a botanical herbicide. 

Keywords:  drupacine       herbicidal activity        physiological characteristic        defense capacity        Amaranthus retroflexus  
Received: 28 January 2022   Accepted: 06 May 2022
Fund: This research was funded by the Provincial Natural Science Foundation of Hebei for Excellent Young Scholar, China (C2021204071), the Science and Technology Project of Hebei Education Department (QN2021079), the Key Research and Development Project of Hebei Province (21326511D and 19226504D), and the China Agriculture Research System of MOF and MARA (CARS-02).

About author:  YU Hua-long, E-mail:; TIAN Ci, E-mail:; #Correspondence MA Shu-jie, E-mail:; ZHANG Li-hui, E-mail: * These authors contributed equally to this study.

Cite this article: 

YU Hua-long, TIAN Ci, SHEN Rong-yan, ZHAO Han, YANG Juan, DONG Jin-gao, ZHANG Li-hui, MA Shu-jie. 2023.

Herbicidal activity and biochemical characteristics of the botanical drupacine against Amaranthus retroflexus L. . Journal of Integrative Agriculture, 22(5): 1434-1444.

Agostini L, Dettogni R, Reis R, Stur E, Santos E, Ventorim D, Garcia F, Cardoso R, Graceli J, Louro I. 2019. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Science of the Total Environment, 705, 135808.
Bakhshayeshan-Agdam H, Lisar S Y S, Motafakkerazad R. 2019. Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) aqueous extract on cucumber and wheat. Allelopathy Journal, 46, 55–72.
Bensch C N, Horak M J, Peterson D. 2009. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science, 51, 37–43.
Buhler D D, Mester T C, Kohler K A. 2010. The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amaranthus retroflexus and Chenopodium album. Weed Research, 36, 153–165.
Carla D, Elisa G, Tamara S, Reigosa M J, Adela M S. 2012. The natural compound trans-halcone induces programmed cell death in Arabidopsis thaliana roots. Plant Cell and Environment, 35, 1500–1517.
Carmen G, Hervás A, Juan A N, Rafael M J, Tena M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiological and Molecular Plant Pathology, 61, 325–337.
Ciriminna R, Fidalgo A, Ilharco L M, Pagliaro M. 2019. Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels, Bioproducts and Biorefining, 13, 1476–1482.
David L, Ledo D, Luz C, Verdeguer M, Manyel J R, Adela M S. 2020. Phytotoxic activity of the natural compound norharmane on crops, weeds and model plants. Plants, 9, 1328.
Dayan F E, Owens D K, Watson S B, Asolkar R N, Boddy L G. 2015. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science, 6, 222.
Diaztielas C, Grana E, Sanchezmoreiras A, Reigosa M, Vaughn J, Pan Z, Bajsahirschel J, Duke M, Duke S. 2019. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. Pest Management Science, 75, 2490–2504.
Du L, Li X, Jiang X, Ju Q, Qu M. 2021. Target-site basis for fomesafen resistance in redroot pigweed (Amaranthus retroflexus) from China. Weed Science, 69, 1–34.
Duke S O, Evidente A, Vurro M. 2019. Natural products in pest management: Innovative approaches for increasing their use. Pest Management Science, 75, 2299–2300.
Feng G, Chen M, Ye H, Zhang Z, Li H, Chen L, Chen X, Yan C, Zhang J. 2019. Herbicidal activities of compounds isolated from the medicinal plant Piper sarmentosum. Industrial Crops and Products, 132, 41–47.
Gindri D M, Coelho C M M, Uarrota V G, Rebelo A M. 2019. Herbicidal bioactivity of natural compounds from Lantana camara on the germination and seedling growth of Bidens pilosa. Pesquisa Agropecuaria Tropical, 50, e57746.
Hisashi K, Francisco A. 2005. Effects of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. Journal of Plant Physiology, 162, 1304–1307.
Huang Z, Cui H, Wang C, Wu T, Zhang C, Huang H, Wei S. 2020. Investigation of resistance mechanism to fomesafen in Amaranthus retroflexus L. Pesticide Biochemistry and Physiology, 165, 104560.
Huang Z, Huang H, Chen J, Wei S, Zhang C. 2019. Nicosulfuron-resistant Amaranthus retroflexus L. in Northeast China. Crop Protection, 122, 79–83.
Jonas V, Neyts E C, Verlackt Christof C W, Bogaerts A. 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, 7, 489–498.
Jungk A. 2001. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science, 164, 121–129.
Kaab S B, Rebey I B, Hanafi M, Hammi K M, Smaoui A, Fauconnier M L, De C C, Jijakli M H, Ksouri R. 2019. Screening of Tunisian plant extracts for herbicidal activity and formulation of bioherbicide based on Cynara cardunculus. South African Journal of Botany, 128, 67–76.
Knezevic S Z, Weise S F, Swanton C J. 2010. Comparison of empirical models depicting density of Amaranthus retroflexus L. and relative leaf area as predictors of yield loss in maize (Zea mays L.). Weed Research, 35, 207–214.
Li Y, Zhang S, Jiang W, Liu D. 2013. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environmental Science and Pollution Research, 20,1117–1123.
Liu L, Cao S, Xie B, Sun Z, Li X, Miao W. 2007. Characterization of polyphenol oxidase from litchi pericarp using (−)-epicatechin as substrate. Journal of Agricultural and Food Chemistry, 55, 7140–7143.
Liu Y, Qu R, Chen Q, Yang J, Niu C, Zhen X, Yang G. 2016. Triazolopyrimidines as new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation. Journal of Agricultural and Food Chemistry, 64, 4845–4857. 
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta (CT)) method. Methods, 25, 402–408.
Ma S J, Fu L L, He S Q, Lu X P, Wu Y, Ma Z Q, Zhang X. 2018. Potent herbicidal activity of Sapindus mukorossi Gaertn against Avena fatua L. and Amaranthus retroflexus L. Industrial Crops and Products, 122, 1–6.
Ma S J, Liu L, Lu X P, Ma Z Q, Zhang X. 2016a. Herbicidal activities of alkaloids from Cephalotaxus sinensis. Scientia Agricultura Sinica, 49, 3746–3753. (in Chinese)
Ma S J, Shi X L, Yan H, Ma Z Q, Zhang X. 2016b. Antiphytoviral activity of alkaloids from Cephalotaxus sinensis. Industrial Crops and Products, 94, 658–664.
Onofri A, Gresta F, Tei F. 2010. A new method for the analysis of germination and emergence data of weed species. Weed Research, 50, 187–198.
Onofri A, Mesgaran M B, Tei F, Cousens R D. 2011. The cure model: an improved way to describe seed germination? Weed Research, 51, 516–524.
Ozlem A, Feruzan D, Filiz E S, Tulin A. 2007. The effects of Fusilade (Fluazifop-p-butyl) on germination, mitotic frequency and α-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiologiae Plantarum, 29, 115–120. 
Pan L, Chai H, Kinghorn A D. 2010. The continuing search for antitumor agents from higher plants. Phytochemistry Letters, 3, 1–8.
Poonpaiboonpipat T, Pangnakorn U, Suvunnamek U, Teerarak M, Charoenying P, Chamroon L. 2013. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Industrial Crops and Products, 41, 403–407.
Saeed M K, Deng Y, Dai R. 2008. Attenuation of biochemical parameters in streptozatocin-induced diabetic rats by oral administration of extract and fraction of Cephalotaxus sinensis. Journal of Clinical Biochemistry and Nutrition, 42, 21–28.
Stamp P, Kiel C. 1992. Root morphology of maize and its relationship to root lodging. Journal of Agronomy and Crop Science, 168, 113–118.
Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151, 59–66.
Wang H Z, Guo W L, Zhang L L, Zhao K P, Ge L, Lv X S, Liu W T, Wang J X. 2017. Multiple resistance tothifensulfuron-methyl and fomesafen in redroot pigweed (Amaranthus retroflexus L.) from China. Chilean Journal of Agricultural Research, 77, 311–317.
Weisberg S. 2005. Applied Linear Regression. John Wiley &Sons, New York, USA.
Wen Y H, Meyer S L F, Masler E P, Zhang F X, Liao J L, Wei X Y, Chitwood D J. 2013. Nematotoxicity of drupacine and a Cephalotaxus alkaloid preparation against the plant-parasitic nematodes Meloidogyne incognita and Bursaphelenchus xylophilus. Pest Management Science, 69, 1026–1033.
Weston P A, Gurusinghe S, Birckhead E, Skoneczny D, Weston L A. 2019. Chemometric analysis of Amaranthus retroflexus in relation to livestock toxicity in southern Australia. Phytochemistry, 161, 1–10.
Wu J, Ma J J, Liu B, Huang L, Zhou L J. 2017. Herbicidal spectrum, absorption and transportation, physiological effect to Bidens pilosa of natural alkaloid, berberine. Journal of Agricultural and Food Chemistry, 65, 6100–6113.
Zhang M, Liu C, Yang J, Yang P, Zhang L H, Dong J G. 2017. Analysis of the herbicidal mechanismof 4-hydroxy-3-methoxy cinnamic acid ethyl ester using iTRAQ and real-time PCR. Journal of Proteomics, 159, 47–53.
Zhao C, Li B, Shao Z, Li D, Jin Y, Li Z, Hua H. 2019. Cephasinenoside A, a new cephalotane diterpenoid glucoside from Cephalotaxus sinensis. Tetrahedron Letters, 60, 151154.

No related articles found!
No Suggested Reading articles found!