Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 781-796    DOI: 10.1016/S2095-3119(20)63494-3
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH
Muhammad Irfan WARIS1, Aneela YOUNAS1, Rana Muhammad Kaleem ULLAH1, Fatima RASOOL2, Muhammad Muzammal ADEEL3, WANG Man-qun
1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China
2 National Center for Bioinformatics, Quaid-i-Azam University, Islamaba 45320, Pakistan 
3 College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Chemosensory proteins (CSPs) are important molecular components of the insect olfactory system, which are involved in capturing, binding, and transporting hydrophobic odour molecules across the sensillum in sensillar lymph in regulating insect behavior.  This protein family (CSPs) is also involved in many other systems that are not linked to olfactory receptors in olfactory sensilla.  The brown planthopper (BPH) is a monophagous pest of rice that causes damage by sucking phloem sap and transmitting a number of diseases caused by viruses.  In this study, fluorescence competitive binding assay and fluorescence quenching assay at acidic pH were performed as well as homology modelling to describe the binding affinity of NlugCSP10.  Fluorescence competitive binding assay (FCBA) demonstrated that NlugCSP10 bound strongly to nonadecane, farnesene, and 2-tridecanone at acidic pH.  The results of FCBA indicated that NlugCSP10 bound different ligands at the physiological pH (5.0) of the bulk sensillum lymph.  Fluorescence quenching assay demonstrated that NlugCSP10 generated a stable complex with 2-tridecanone, while two ligands nonadecane and farnesene collided due to molecular collisions.  The interaction of selected ligands with the modelled structure of NlugCSP10 was also analyzed, which found the key amino acids (Gln23, Gln24, Gln25, Asn27, Met33, Ser34, Ile35, Tyr36, Asn42, Met43, Val45, Asn46, Asn93, Arg96, Ala97, Lys99, and Ala100) in NlugCSP10 that were involved in binding of volatile compounds.  The present study contributes to the binding profile of NlugCSP10 that promotes the development of behaviorally active ligands based on BPH olfactory system.
 
Keywords:  insect olfaction        chemosensory protein        Nilaparvata lugens        fluorescence competitive binding assay        fluorescence quenching assay        molecular docking  
Received: 05 July 2020   Accepted: 03 November 2020
Fund: This study was supported and funded by the National Key Research and Development Program of China (2017YFE0113900) and the Special Technical Innovation of Hubei Province, China (2017ABA146).
About author:  Correspondence WANG Man-qun, E-mail: mqwang@mail.hzau.edu.cn

Cite this article: 

Muhammad Irfan WARIS, Aneela YOUNAS, Rana Muhammad Kaleem ULLAH, Fatima RASOOL, Muhammad Muzammal ADEEL, WANG Man-qun. 2022. Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH. Journal of Integrative Agriculture, 21(3): 781-796.

Antony B, Soffan A, Jakše J, Abdelazim M M, Aldosari S A, Aldawood A S, Pain A. 2016. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics, 17, 69. 
Briand L, Swasdipan N, Nespoulous C, Bézirard V, Blon F, Huet J C, Ebert P, Penollet J C. 2002. Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. European Journal of Biochemistry, 269, 4586–4596.
Brito N F, Moreira M F, Melo A C. 2016. A look inside odorant binding proteins in insect chemoreception. Journal of Insect Physiology, 95, 51–65. 
Brito N F, Oliveira D S, Santos T C, Moreira M F, Melo A C. 2020. Current and potential biotechnological applications of odorant-binding proteins. Applied Microbiology and Biotechnology, 104, 8631–8648.
Campanacci V, Krieger J, Bette S, Sturgis J N, Lartigue A, Breer H, Tegoni M. 2001. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. Journal of Biological Chemistry, 276, 20078–20084. 
Carlsen M, Røgen P. 2015. Protein structure refinement by optimization. Proteins, 83, 1616–1624. 
Cheng X L, Zhu L, He G. 2013. Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 6, 621–634. 
Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young M W. 2001. Circadian regulation of gene expression systems in the Drosophila head. Neuron, 32, 657–671. 
D’Onofrioa C, Zaremskaa V, Zhu J, Knoll W, Pelosi P. 2020. Ligand-binding assays with OBPs and CSPs. Methods in Enzymology, 642, 229–258.
Duan S G, Li D Z, Wang M Q. 2019. Chemosensory protein used as target for screening behaviourally active compounds in rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Insect Molecular Biology, 28, 123–135. 
Dudareva N, Pichersky E, Gershenzon J. 2004. Biochemistry of plant volatiles. Plant Physiology, 135, 1893–1902. 
Falchetto M, Ciossani G, Scolari F, Di Cosimo A, Nenci S, Field L M, Mattevi A, Zhou J J. 2019. Structural and biochemical evaluation of Ceratitis capitata odorant-binding protein 22 affinity for odorants involved in intersex communication. Insect Molecular Biology, 28, 431-443. 
Fleischer J, Pregitzer P, Breer H, Krieger J. 2018. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences, 75, 485–508. 
Franco T A, Xu P, Brito N F, Oliveira D S, Wen X, Moreira M F, Unelius C R, Leal W S, Melo A C A. 2018. Reverse chemical ecology-based approach leading to the accidental discovery of repellents for Rhodnius prolixus, a vector of Chagas diseases refractory to DEET. Insect Biochemistry and Molecular Biology, 103, 46–52.
Fujii T, Hori M, Matsuda K. 2010. Attractants for rice leaf bug, Trigonotylus caelestialium (Kirkaldy), are emitted from flowering rice panicles. Journal of Chemical Ecology, 36, 999–1005.
van der Goes van Naters W, Carlson J R. 2006. Insects as chemosensors of humans and crops. Nature, 444, 302–307. 
Gong Y, Fan Z. 2016. Room-temperature phosphorescence turn-on detection of DNA based on riboflavin-modulated manganese doped zinc sulfide quantum dots. Journal of Fluorescence, 26, 385–393.
Gu R, Su C C, Shi F, Li M, McDermott G, Zhang Q, Yu E W. 2007. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. Journal of Molecular Biology, 72, 583–593. 
Gu S H, Wang S Y, Zhang X Y, Ji P, Liu J T, Wang G R, Wu K M, Guo Y Y, Zhou J J, Zhang Y J. 2012. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE, 7, e42871. 
Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L. 2011. CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genetics, 7, e1001291. 
He P, Chen G L, Li S, Wang J, Ma Y F, Pan Y F, He M. 2019. Evolution and functional analysis of odorant-binding proteins in three rice planthoppers: Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus. Pest Management Science, 75, 1606–1620.
Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal W S, Wüthrich K. 2001. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proceedings of the National Academy of Sciences of the United States of America, 98, 14374–14379.
Jacquin-Joly E, Vogt R G, Francois M C, Nagnan-Le M P. 2001. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chemical Senses, 26, 833–844. 
Jansen S, Chmelík J, Zídek L, Padrta P, Novák P, Zdráhal Z, Picimbon J F, Löfstedt C, Sklenár V. 2007. Structure of Bombyx mori chemosensory protein 1 in solution. Archives of Insect Biochemistry and Physiology, 66, 135–145. 
Jin R, Liu N Y, Liu Y, Dong S L. 2015. A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner). Journal of Integrative Agriculture, 14, 1356–1366.
Khuhro S A, Yan Q, Liao H, Zhu G H, Sun J B, Dong S L. 2018. Expression profile and functional characterization suggesting the involvement of three chemosensory proteins in perception of host plant volatiles in Chilo suppressalis (Lepidoptera: Pyralidae). Journal of Insect Science, 18, 1–8. 
Kitabayashi A N, Arai T, Kubo T, Natori S. 1998. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochemistry and Molecular Biology, 28, 785–790. 
Kobayashi T. 2016. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. Journal of Insect Physiology, 84, 32–39.
Lartigue A, Campanacci V, Roussel A, Larsson A M, Jones T A, Tegoni M, Cambillau C. 2002. X-ray structure and ligand binding study of a moth chemosensory protein. Journal of Biological Chemistry, 277, 32094–32098. 
Laskowski R A, Swindells M B. 2011. Ligplot+: Multiple ligand- protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
Laughlin J D, Ha T S, Jones D N M, Smith D P. 2008. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell, 133, 1255–1265.
Li G W, Chen X L, Chen L H, Wang W Q, Wu J X. 2019. Functional analysis of the chemosensory protein GmolCSP8 from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Frontiers in Physiology, 10, 552.
Li H, Zhang L, Ni C, Shang H, Zhuang S, Li J. 2013. Molecular recognition of floral volatile with two olfactory related proteins in the Eastern honeybee (Apis cerana). International Journal of Biological Macromolecules, 56, 114–121. 
Li X, Lu D, Liu X, Zhang Q, Zhou X. 2011. Ultrastructural characterization of olfactory sensilla and immunolocalization of odorant binding and chemosensory proteins from an ectoparasitoid Scleroderma guani (Hymenoptera: Bethylidae). International Journal of Biological Sciences, 7, 848–868.
Leal W S. 2013. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.
Maleszka J, Foret S, Saint R, Maleszka R. 2007. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Development Genes and Evolution, 217, 189–196.
Maleszka R, Stange G. 1997. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene, 202, 39–43. 
Mao Y, Xu X, Xu W, Ishida Y, Leal W S, Ames J B, Clardy J. 2010. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proceedings of the National Academy of Sciences of the United States of America, 107, 19102–19107.
McKenna M P, Hekmat-Scafe D S, Gaines P, Carlson J R. 1994. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. Journal of Biological Chemistry, 269, 16340–16347.
Monteforti G, Angeli S, Petacchi R, Minnocci A. 2002. Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida: Phasmatidae). Arthropod Structure & Development, 30, 195–205.
Nagnan-Le M P, Cain A H, Jacquin-Joly E, Francois M C, Ramachandran S, Maida R, Steinbrecht R A. 2000. Chemosensory proteins from the proboscis of Mamestra brassicae. Chemical Senses, 25, 541–553. 
Nomura A, Kawasaki K, Kubo T, Natori S. 1992. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). The International Journal of Developmental Biology, 36, 391–398.
Pelosi P, Calvello M, Ban L. 2005. Diversity of odorant-binding proteins and chemosensory proteins in insects. Chemical Senses, 30, 291–292. 
Pelosi P, Iovinella I, Felicioli A, Dani F R. 2014. Soluble proteins of chemical communication: an overview across arthropods. Frontiers in Physiology, 5, 320. 
Pelosi P, Iovinella I, Zhu J, Wang G, Dani F R. 2018. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biological Reviews of the Cambridge Philosophical Society, 93, 184–200. 
Pelosi P, Zhou J J, Ban L P, Calvello M. 2006. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 63, 1658–1676. 
Pesenti M E, Spinelli S, Bezirard V, Briand L, Pernollet J C, Campanacci V, Tegoni M, Cambillau C. 2009. Queen bee pheromone binding protein pH induced domain swapping favors pheromone release. Journal of Molecular Biology, 390, 981–990.
Picimbon J F, Dietrich K, Breer H, Krieger J. 2000. Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochemistry and Molecular Biology, 30, 233–241. 
Picimbon J F, Dietrich K, Krieger J, Breer H. 2001. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochemistry and Molecular Biology, 31, 1173–1181. 
Pikielny C W, Hasan G, Rouyer F, Rosbash H. 1994. Members of a family of Drosophila putative odorant-binding proteins are expressed in different sub-sets of olfactory hairs. Neuron, 12, 35–49. 
Ramagli L S, Rodriguez L V. 1985. Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6, 559–563.
Ran D, Wu X, Zheng J, Yang J, Zhou H, Zhang M, Tang Y. 2007. Study on the interaction between florasulam and bovine serum albumin. Journal of Fluorescence, 17, 721–726.
Rasoulzadeha F, Jabary H N, Naseria A, Rashidi M R. 2009. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochimica Acta (Part A: Molecular and Biomolecular Spectroscopy), 72, 190–193. 
Sandler B H, Nikonova L, Leal W S, Clardy J. 2000. Sexual attraction in the silkworm moth: Structure of the pheromone-binding-protein-bombykol complex. Chemistry & Biology, 7, 143–151. 
Seeliger D, de Groot B L. 2010. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer–Aided Molecular Design, 24, 417–422.
Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C. 2012. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochemistry and Molecular Biology, 42, 41–50. 
Sun S, Zeng F, Yi S, Wang M. 2019. Molecular screening of behaviorally active compounds with CmedOBP14 from the rice leaf folder Cnaphalocrocis medinalis. Journal of Chemical Ecology, 45, 849–857.
Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P, Piconeet D. 2006. Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry, 45, 10606–10613. 
Wanner K W, Isman M B, Feng Q, Plettner E, Theilmann D A. 2005. Developmental expression patterns of four chemosensory protein genes from the Eastern spruce budworm, Chroistoneura fumiferana. Insect Molecular Biology, 14, 289–300. 
Waris M I, Younas A, Adeel M M, Duan S G, Quershi S R, Kaleem Ullah R M, Wang M Q. 2020a. The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. Insect Science, 3, 531–544. 
Waris M I, Younas A, Ameen A, Rasool F, Wang M Q. 2020b. Expression profiles and biochemical analysis of chemosensory protein 3 from Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Chemical Ecology, 46, 363–377.
Waris M I, Younas A, ul Qamar M T, Hao L, Ameen A, Ali S, Abdelnabby H E, Zeng F F, Wang M Q. 2018. Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Nilaparvata lugens. Frontiers in Physiology, 9, 379.
Weert M V D, Stella L. 2011. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of Molecular Structure, 998, 144–150.
Yang K, He P, Dong S L. 2014. Different expression profiles suggest functional differentiation among chemosensory proteins in Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Insect Science, 14, 270.
Yang R N, Li D Z, Yu G, Yi S C, Zhang Y, Kong D X, Wang M Q. 2017. Structural transformation detection contributes to screening of behaviorally active compounds: Dynamic binding process analysis of DhelOBP21 from Dastarcus helophoroides. Journal of Chemical Ecology, 43, 1033–1045. 
Yi S Y, Li D Z, Zhou C X, Tang Y L, Abdelnabby H E, Wang M Q. 2018. Screening behaviorally active compounds based on fluorescence quenching in combination with binding mechanism analyses of SspOBP7, an odorant binding protein from Sclerodermus sp. International Journal of Biological Macromolecules, 107, 2667–2678.
Zhang T T, Wang W X, Zhang Z D, Zhang Y J, Guo Y Y. 2013. Functional characteristics of a novel chemosensory protein in the cotton bollworm Helicoverpa armigera (Hübner). Journal of Integrative Agriculture, 12, 853–861.
Zhang Y N, Ye Z F, Yang K, Dong S L. 2014. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene, 536, 279–286.
Zhou J J, Kan Y, Antoniw J, Pickett J A, Field L M. 2006. Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chemical Senses, 31, 453–465.
Zhou J J, Robertson G, He X, Dufour S, Hooper A M, Pickett J A, Keep N H, Field L M. 2009. Characterization of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. Journal of Molecular Biology, 389, 529–545. 
Zhou S, Sun Z, Ma Z, Chen W, Wang M Q. 2014. De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes. Comparative Biochemistry and Physiology (Part D: Genomics and Proteomics), 9, 31–39.

[1] WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa[J]. >Journal of Integrative Agriculture, 2023, 22(2): 514-525.
[2] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
No Suggested Reading articles found!