Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3681-3693    DOI: 10.1016/j.jia.2023.07.037
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Resistance risk and molecular mechanism associated with resistance to picoxystrobin in Colletotrichum truncatum and Colletotrichum gloeosporioides

SHI Niu-niu1,2, LIAN Jin-pan3, QIU De-zhu1, CHEN Fu-ru1, DU Yi-xin1,2#

1 Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, P.R.China
2 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, P.R.China
3 Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

炭疽病是大豆最重要的病害之一,平头炭疽菌胶孢炭疽菌是其最主要的病原菌。啶氧菌酯属于QoI类杀菌剂,常用于作物炭疽病的防治。然而,我国大豆平头炭疽菌和胶孢炭疽菌对啶氧菌酯的敏感性抗性风险和抗性分子机制尚不清楚。本研究建立了大豆平头炭疽菌和胶孢炭疽菌对啶氧菌酯的敏感基线,采用室内药剂驯化的方法诱导抗性突变体,并测定抗性突变体的适合度和交互抗性,同时比较分析抗性突变体和敏感菌株cyt b基因cDNA序列,进一步利用分子对接明确敏感菌株和突变体Cyt b蛋白与啶氧菌酯的结合力。结果表明:供试的128株平头炭疽菌和121株胶孢炭疽菌对啶氧菌酯的EC50分布呈连续单峰曲线平均EC50值分别为0.7740和1.1561 μg mL-1,该平均EC50值可作为相对敏感基线监测未来田间大豆平头炭疽菌和胶孢炭疽菌对啶氧菌酯的敏感性变化。分别筛选获得11株平头炭疽菌和6株胶孢炭疽菌的抗性突变体,其EC50值分别为5.40–152.96 µg mL-1、13.53–28.30 μg mL-1。抗性突变体在分生孢子的产生、萌发和致病性方面表现出与亲本菌株相似或更高的生存适合度。啶氧菌酯与吡唑醚菌酯之间存在交互抗性,而与氟啶胺、苯醚甲环唑及丙环唑之间无交互抗性。平头炭疽菌7株高抗突变体(RF > 100)cyt b基因427位碱基由G突变为A,所编码的Cyt b蛋白143位由甘氨酸(G)突变为丝氨酸(S),4株中抗突变体(RF < 50)cyt b基因409位碱基由G突变为A,所编码的Cyt b蛋白137位由甘氨酸(G)突变为精氨酸(R)。分子对接验证发现G143SG137R突变是平头炭疽菌对啶氧菌酯产生抗药性的主要机制。胶孢炭疽菌抗性突变体cyt b基因未发生突变。温室试验结果表明,啶氧菌酯不能有效地防治高抗突变体,对中抗突变体的防效也显著下降。总之,G143SG137R是大豆平头炭疽菌对啶氧菌酯产生抗药性的主要机制,大豆平头炭疽菌和胶孢炭疽菌对啶氧菌酯的抗性风险为中至高等,生产中应QoI类杀菌剂实施抗性监测,并采取有效的抗性管理策略。



Abstract  

Anthracnose, caused by Colletotrichum truncatum and Cgloeosporioides, is amongst the most serious diseases of soybean in China.  Picoxystrobin, a quinone outside inhibitor fungicide, is commonly used for the control of anthracnose.  Its resistance risk and mechanism in Ctruncatum and Cgloeosporioides are unclear.  In this study, the sensitivities of 128 Ctruncatum and 121 Cgloeosporioides isolates to picoxystrobin were investigated, and unimodal distributions were observed with average EC50 values of 0.7740 and 1.1561 μg mL–1, respectively.  Eleven picoxystrobin-resistant mutants of Ctruncatum and six mutants of Cgloeosporioides were acquired, with EC50 values varying from 5.40–152.96 and 13.53–28.30 μg mL–1, respectively.  Compared to the parental isolates, mutants showed similar or higher relative fitness in conidial production and germination, and pathogenicity.  Collectively, the resistance risk of Ctruncatum and Cgloeosporioides to picoxystrobin is moderate to high.  There was positive cross-resistance between picoxystrobin and pyraclostrobin, but not between picoxystrobin and fluazinam, difenoconazole, or propiconazole.  The G143S mutation in Cyt b protein was detected in seven high-resistant mutants of Ctruncatum (RF>100), and G137R occurred in four moderate-resistant mutants (RF<50).  Contrastingly, there were no point mutations in Cyt b of any Cgloeosporioides mutants.  Molecular docking confirmed that two mutations conferred different resistance levels to picoxystrobin.  Under greenhouse trials, picoxystrobin did not control mutants with the G143S mutation, those bearing G137R or no point mutation were somewhat controlled, but at a lower level compared to wild-type isolates.  These results showed that integrated management strategies should be implemented to preserve fungicide effectiveness.

Keywords:  Colletotrichum truncatum        Colletotrichum gloeosporioides        picoxystrobin        point mutation        Cyt b        molecular docking  
Received: 18 April 2023   Accepted: 13 June 2023
Fund: This work was funded by the Natural Science Foundation of Fujian Province, China (2021J01476), East and West Cooperation Project of the Fujian Academy of Agricultural Sciences, China (DKBF-2022-01), the Project of Department of Agriculture and Rural Affairs in Fujian Province (2021PZQS006), the “5511” Collaborative Innovation Project of High-quality Agricultural Development and Surpassment in Fujian Province (XTCXGC2021011), and the Team Project Funding of Scientific Research Innovation of FAAS, China (CXTD2021002-1).
About author:  SHI Niu-niu, E-mail: niuniushi@126.com; #Correspondence DU Yi-xin, E-mail: yixindu@163.com

Cite this article: 

SHI Niu-niu, LIAN Jin-pan, QIU De-zhu, CHEN Fu-ru, DU Yi-xin. 2023. Resistance risk and molecular mechanism associated with resistance to picoxystrobin in Colletotrichum truncatum and Colletotrichum gloeosporioides. Journal of Integrative Agriculture, 22(12): 3681-3693.

Banno S, Yamashita K, Fukumori F, Okada K, Uekusa H, Takagaki M, Kimura M, Fujimura M. 2009. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology58, 120–129.

Barbieri M C G, Ciampi-Guillardi M, Moraes S R G, Bonaldo S M, Rogério F, Linhares R R, Massola N S. 2017. First report of Colletotrichum cliviae causing anthracnose on soybean in Brazil. Plant Disease101, 1677.

Bartlett D W, Clough J M, Godwin J R, Hall A A, Hamer M, Parr-Dobrzanski B. 2002. The strobilurin fungicides. Pest Management Science58, 649–662.

BIOVIA Dassault Systèmes. 2017. Discovery Studio Modeling Environment. Release 2017. Dassault Systèmes: San Diego, CA, USA.

Boufleur T R, Castro R R L, Rogério F, Ciampi-Guillardi M, Baroncelli R, Massola Júnior N S. 2020. First report of Colletotrichum musicola causing soybean anthracnose in Brazil. Plant Disease104, 1858.

Boufleur T R, Ciampi-Guillardi M, Tikami Í, Rogério F, Thon M R, Sukno S A, Massola Júnior N S, Baroncelli R. 2021. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. Molecular Plant Pathology22, 393–409.

Brand U, Haase U, Schagger H, von Jagow G. 1993. peziesspez-ifitatun wirkmechanismus der strobilurine. In: Kuhne W H, Anke T, Ouken U, eds., Wege zu Neuen Produkten und Verfahren der Biotechnologie. Wiley-VCH, Weinheim, Germany. pp. 27–39.

Chechi A, Stahlecker J, Dowling M E, Schnabel G. 2019. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology158, 18–24.

Damm U, Buiate E A, Epstein L, Alkan N, Altmuller J, Alvarado-Balderrama L, Bauser C A, Becker C, Birren B W, Chen Z, Choi J, Crouch J A, Duvick J P, Farman M A, Gan P, Heiman D, Henrissat B, Howard R J, Kabbage M, Koch C, et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics44, 1060–1065.

Damm U, Sato T, Alizadeh A, Groenewald J Z, Crous P W. 2019. The Colletotrichum dracaenophilumCmagnum and Corchidearum species complexes. Studies in Mycology92, 1–46.

DB35/T 1574-2016. 2016. Technical specification for identification of soybean resistance to anthracnose. Fujian Provincial Bureau of Quality and Technical Supervision, China. (in Chinese)

Dean R, Van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13, 414–430.

Dias M, Dias-Neto J, Santos M, Formento A, Bizerra L, Fonseca M E N, Boiteux L S, Café-Filho A C. 2019. Current status of soybean anthracnose associated with Colletotrichum truncatum in Brazil and Argentina. Plants8, 459.

Dias M D, Pinheiro V F, Café-Filho A C. 2016. Impact of anthracnose on the yield of soybean subjected tochemical control in the north region of Brazil. Summa Phytopathologica42, 18–23.

Du Y X, Shi N N, Ruan H C, Miao J Q, Yan H, Shi C X, Chen F R, Liu X L. 2021. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporusPest Management Science77, 4680–4690.

Fernández-Ortuño D, Torés J A, de Vicente A, Pérez-García A. 2008. Field resistance to QoI fungicides in Podosphaera fuscais not supported by typical mutations in the mitochondrial cytochrome b gene. Pest Management Science64, 694–702.

Fernández-Ortuño D, Torés J A, de Vicente A, Pérez-García A. 2010. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology11, 1–9.

Fisher N, Brown A C, Sexton G, Cook A, Windass J, Meunier B. 2004. Modeling the Qo site of crop pathogens in Saccharomyces cerevisiae cytochrome bEuropean Journal of Biochemistry271, 2264–2271.

Fontaine S, Remuson F, Caddoux L, Barrès B. 2019. Investigation on the sensitivity of Plasmopara viticola to amisulbrom and ametoctradin in French vineyards using bioassays and molecular tools. Pesticide Management Science75, 2115–2123.

Forcelini B B, Rebello C S, Wang N Y, Peres N A. 2018. Fitness, competitive ability, and mutation stability of isolates of Colletotrichum acutatum from strawberry resistant to QoI fungicides. Phytopathology108, 462–468.

Fouché G, Michel T, Lalève A, Wang N X, Young D H, Meunier B, Debieu D, Fillinger S, Walker A S. 2022. Directed evolution predicts cytochrome b G37V target site modification as probable adaptive mechanism towards the QiI fungicide fenpicoxamid in Zymoseptoria triticiEnvironmental Microbiology24, 1117–1132.

FRAC (Fungicide Resistance Action Committee). 2021. FRAC code list 2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC groups on product labels). [2022-12-30]. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2021--final.pdf?sfvrsn=f7ec499a_2

Gisi U, Sierotzki H, Cook A, McCaffery A. 2002. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science58, 859–867.

Hartman G L, Bowen C R, Haudenshield J S, Fox C M, Cary T R, Diers B W. 2015. Evaluation of disease and pest damage on soybean cultivars released from 1923 through 2008 under field conditions in central Illinois. Agronomy Journal107, 2373–2380.

Hartman G L, West E D, Herman T K. 2011. Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Security3, 5–17.

Hawkins N J, Bass C, Dixon A, Neve P. 2019. The evolutionary origins of pesticide resistance. Biological Reviews94, 135–155.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589.

Li T, Xu J X, Gao H, Cao Z G, Wang J X, Cai Y Q, Duan Y B, Zhou M G. 2022. The G143A/S substitution of mitochondrially encoded cytochrome b (Cytb) in Magnaporthe oryzae confers resistance to quinone outsideinhibitors. Pest Management Science78, 4850–4858.

Mahmodi F, Kadir J B, Wong M Y, Nasehi A, Puteh A, Soleimani N. 2013. First report of anthracnose caused by Colletotrichum gloeosporioides on soybean (Glycine max) in Malaysia. Plant Disease97, 841.

Masuda T, Goldsmith P D, Harling K. 2009. World soybean production: Area harvested, yield, and long-term projections. International Food and Agribusiness Management Review12, 1–20.

Miao J Q, Zhao G S, Wang B, Du Y X, Li Z W, Gao X H, Miao J Q, Liu X L. 2020. Three point-mutations in cytochrome b confer resistance to trifloxystrobin in Magnaporthe griseaPest Management Science76, 4258–4267.

Nagaraj B T, Jahagirdar S, Basavaraja G T. 2014. Identification of resistant sources in glass house and field evaluation of soybean genotypes to anthracnose caused by Colletotrichum truncatum (Schw.) Andrus and Moore. The Bioscan9, 1333–1336.

Nataraj V, Maranna S, Kumawat G, Gupta S, Rajput L S, Kumar S, Sharma N A, Bhatia V S. 2020. Genetic inheritance and identification of germplasm sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution67, 1449–1456.

Owati A S, Agindotan B, Pasche J S, Burrows M. 2017. The detection and characterization of QoI-resistant Didymella rabiei causing Ascochyta blight of chickpea in Montana. Frontiers in Plant Science8, 1165.

Padder B A, Sharma P N, Awale H, Kelly J D. 2017. Colletotrichum lindemuthianum the causal agent of bean anthracnose. Plant Pathology Journal99, 317–330.

Peng Q, Zhao H, Zhao G S, Gao X H, Miao J Q, Liu X L. 2022. Resistance assessment of pyraoxystrobin in Magnaporthe oryzae and the detection of a point mutation in cyt b that confers resistance. Pesticide Biochemistry and Physiology180, 105006.

Poti T, Mahawan K, Cheewangkoon R, Arunothayanan H, Akimitsu K, Nalumpang S. 2020. Detection and molecular characterization of carbendazim-resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology168, 267–278.

Reimann S, Deising H B. 2005. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4´-hydroxyflavone and enhancement of fungicide activity. Applied and Environmental Microbiology71, 3269–3275.

Ren L, Wang S F, Shi X J, Cao J Y, Zhou J B, Zhao X J. 2020. Characterisation of sensitivity of Colletotrichum gloeosporioides and Colletotrichum capsici, causing pepper anthracnose, to picoxystrobin. Journal of Plant Diseases and Protection127, 657–666.

Sharma S K, Gupta G K, Ramteke R. 2011. Colletotrichum truncatum [(Schw.) Andrus and W.D. Moore], the causal agent of anthracnose of soybean [Glycine max (L.) Merrill.]. Soybean Research9, 31–52.

Shi N N, Du Y X, He Y Q, Ruan H C, Teng Z Y, Gan L, Lian J P, Yang Z L, Chen F R. 2021a. Assessment on anthracnose-resistance of 590 soybean cultivars in China. Fujian Journal of Agricultural Sciences36, 1–12. (in Chinese)

Shi N N, Ruan H C, Jie Y L, Chen F R, Du Y X. 2021b. Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China. Crop Protection143, 105572.

Shi N N, Ruan H C, Jie Y L, Chen F R, Du Y X. 2022. Isolation and identification of Colletotrichum species associated with soybean anthracnose in Fujian Province. Journal of Plant Protection49, 539–546. (in Chinese)

Sierotzki H, Frey R. 2007. Cytochrome b gene sequence and structure of Pyrenophora teres and Ptritici-repentis and implications for QoI resistance. Pest Management Science63, 225–233.

Sierotzki H, Parisi S, Steinfeld U, Tenzer I, Poirey S, Gisi U. 2000. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijensis field isolates. Pest Management Science56, 833–841.

Da Silva L L, Moreno H L A, Correia H L N, Santana M F, de Queiroz M V. 2020. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Applied Microbiology and Biotechnology104, 1891–1904.

Silva O C, Santos H A A, Dalla Pria M, May-De Mio L L. 2011. Potassium phosphite for control of downy mildew of soybean. Crop Protection30, 598–604.

Subedi S, Gharti D B, Neupane S, Ghimire T. 2016. Management of anthracnose in soybean using fungicide. Journal of Nepal Agricultural Research Council1, 29–32.

Trott O, Olson A J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry31, 455–461.

Veloukas T, Kalogeropoulou P, Markoglou A N, Karaoglanidis G S. 2014. Fitness and competitive ability of Botrytis cinerea field isolate with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Phytopathology104, 347–356.

Wang J, Shi D Y, Wei L L, Chen W C, Ma W W, Chen C J, Wang K. 2020. Mutations at sterol 14α-demethylases (CYP51A&B) confer the DMI resistance in Colletotrichum gloeosporioides from grape. Pest Management Science76, 4093–4103.

Wei L L, Chen W C, Zhao W C, Wang J, Wang B R, Li F J. 2020. Mutations and overexpression of CYP51s associated with DMI-resistance in Colletotrichum gloeosporioides from Chili. Plant Disease104, 668–676.

Yang H C, Hartman G L. 2015. Methods and evaluation of soybean genotypes for resistance to Colletotrichum truncatumPlant Disease99, 143–148.

Zeng F, Amao E, Zhang G, Olaya G, Wullschleger J, Sierotzki H, Ming R, Bluhm B H, Bond J P, Fakhoury M A, Bradley C A. 2015. Characterization of quinone outside inhibitor fungicide resistance in Cercospora sojina and development of diagnostic tools for its identification. Plant Disease99, 544–550.

Zhang C, Diao Y Z, Wang W Z, Hao J J, Imran M, Duan H X, Liu X L. 2017. Assessing the risk for resistance and elucidating the genetics of Colletotrichum truncatum that is only sensitive to some DMI fungicides. Frontiers in Microbiology8, 1779.

Zhao P L, Wang L, Zhu X L, Huang X Q, Zhan C G, Wu J W, Yang G F. 2010. Subnanomolar inhibitor of cytochrome bc1 complex designed by optimizing interaction with conformationally flexible residues. Journal of the American Chemical Society132, 185–194.

Zhou Y X, Chen L, Hu J, Duan H X, Lin D, Liu P F, Meng Q X, Li B, Si N G, Liu C L, Liu X L. 2015. Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchiiScientific Reports5, 1–10.

[1] WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa[J]. >Journal of Integrative Agriculture, 2023, 22(2): 514-525.
[2] Muhammad Irfan WARIS, Aneela YOUNAS, Rana Muhammad Kaleem ULLAH, Fatima RASOOL, Muhammad Muzammal ADEEL, WANG Man-qun. Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH[J]. >Journal of Integrative Agriculture, 2022, 21(3): 781-796.
No Suggested Reading articles found!