Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 436-447    DOI: 10.1016/j.jia.2025.02.007
Section 1: Regional Resources and Ecosystem Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022

Liyan Wang1, 2, 3, Buqing Wang4, Zhengmiao Deng1, 2#, Yonghong Xie1, 2#, Tao Wang1, 2, Feng Li1, 2, Shao’an Wu4, Cong Hu5, Xu Li1, 2, Zhiyong Hou1, 2, Jing Zeng1, 2 Ye’ai Zou1, 2, Zelin Liu6, Changhui Peng6, 7, Andrew Macrae8

1 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2 National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem in Hunan Province, Changsha 410125, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410600, China

5 Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning 530100, China

6 College of Geographic Science, Hunan Normal University, Changsha 410081, China

7 Department of Biological Sciences, The University of Québec at Montreal, Montreal QC H3C 3P8, Canada

8 Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, BR 21941902, Brazil

 Highlights 
The surface soil organic carbon (SOC) stock of Dongting Lake in 2022 was  6.82 Tg C (2.87–13.48 Tg C).
Surface SOC was lost in Dongting Lake because of climatic and hydrological changes.
Above 21.4 m elevation, SOC loss accelerated with increasing elevation.
Raising the water level during drought periods may be an important way to enhance the carbon sequestration potential of wetlands.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  在洪泛平原湿地,气候变化和人类活动导致的水文情势变化可能会降低湿地土壤的碳固存能力,从而对全球气候变化产生负面影响。然而,水文情势变化对土壤碳的影响程度仍然没有得到充分监测。为了弥补这一研究空白,我们在2013年至2022年期间在洞庭湖洪泛区采集了306个表层(0-20cm)土壤样本。采用随机森林(RF)算法分析了洞庭湖表层土壤有机碳(SOC)的空间分布。研究了近十年来气候和水文变化对东洞庭湖表层SOC的影响。2022年,洞庭湖湿地的SOC含量范围为3.34至17.67 g kg-1之间,平均为10.43 g kg-1,相应的SOC密度为2.65±0.49 kg m-2,SOC储量为6.82 Tg C(2.87-13.48 Tg C)。2013年至2022年,东洞庭湖的SOC含量从18.37 g kg-1下降到10.82 g kg-1。这可能是由于气候和水文变化影响了植被生长,从而减少了 SOC 输入并加速了 SOC 分解。在高程21.43米以上,土壤有机碳的损失量随着高程的升高而增加,这与南荻群落生物量的下降以及高程高的区域更易受气候和水文变化的影响有关。我们的研究结果强调了要加强湿地SOC管理的必要性,以增加土壤中的SOC,从而帮助应对气候变化。

Abstract  
In floodplain wetlands, alterations in hydrological patterns resulting from climate change and human activities could potentially diminish the carbon sequestration capacity of the soils, thereby having a negative impact on global climate change.  However, the magnitude of the influence of hydrological regime change on soil carbon remains inadequately monitored.  To address this research gap, we collected 306 upper layer (0–20 cm) soil samples from the Dongting Lake floodplain between 2013 and 2022.  The random forest (RF) algorithm was used to analyze the spatial distribution of soil organic carbon (SOC) in the upper soil layer of Dongting Lake floodplain and the impact of climate and hydrological changes in the past decade on surface SOC in the East Dongting Lake area was studied.  In 2022, the SOC concentration of the Dongting Lake floodplain upper layer soil ranged from 3.34 to 17.67 g kg–1, averaging 10.43 g kg–1, with a corresponding SOC density of (2.65±0.49) kg m–2 and total SOC stock of 6.82 Tg C (2.87–13.48 Tg C).  From 2013 to 2022, the SOC concentration of the upper soil layer of the East Dongting Lake area decreased from 18.37 to 10.82 g kg–1.  This reduction could be attributed to climate and hydrological changes which reduce SOC input by reducing vegetation growth and accelerating SOC decomposition.  Above 21.4 m elevation, the amount of SOC loss increased with elevation, the loss being related to the decline in Miscanthus community biomass and greater susceptibility of higher altitude areas to climate and hydrological changes.  Our results highlight the need for strengthening wetland SOC management to increase SOC in the soils to help combat climate change.
Keywords:  floodplain wetland       soil organic carbon        spatial pattern        dynamic change  
Received: 24 September 2024   Accepted: 04 December 2024 Online: 10 February 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2022YFC3204101 and 2023YFF0807202), the National Natural Science Foundation of China (U22A20570 and U2444221), the Youth Promotion Association of the Chinese Academy of Sciences (2021365), the Changsha Outstanding Innovative Youth Project, China (kq2305035), the Science, Technology and Innovation Platform Plan of  Hunan Province, China (2022PT1010), the Major Scientific and Technological Projects of the Ministry of Water Resources, China (SKS-2022081), and the Comprehensive Investigation and Potential Evaluation of Natural Resources Carbon Sink in Southern Hilly Region, China (DD20220880).

About author:  Liyan Wang, E-mail: 1484311850@qq.com; #Correspondence Zhengmiao Deng, Tel: +86-731-84615206, E-mail: dengzhengmiao@163.com; Yonghong Xie, Tel: +86-731-84615203, E-mail: xyh@isa.ac.cn

Cite this article: 

Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. 2026. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022. Journal of Integrative Agriculture, 25(2): 436-447.

Alhassan A R M, Ma W, Li G, Jiang Z, Wu J, Chen G. 2018. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Ecology and Evolution8, 11999–12010.

Bai J H, Hua O Y, Wei D, Zhu Y M, Zhang X L, Wang Q G. 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124, 181–192.

Bai J H, Yu L, Du S D, Wei Z Q, Liu Y T, Zhang L, Zhang G L, Wang X. 2020. Effects of flooding frequencies on soil carbon and nitrogen stocks in river marginal wetlands in a ten-year period. Journal of Environmental Management267, 110618.

Bradford M A, Wieder W R, Bonan G B, Fierer N, Raymond P A, Crowther T W. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6, 751–758.

Breiman L. 2001. Random forests. Machine Learning45, 5–32.

Conant R T, Ryan M G, Ågren G I, Birge H E, Davidson E A, Eliasson P E, Evans S E, Frey S D, Giardina C P, Hopkins F M, Hyvönen R, Kirschbaum M U F, Lavallee J M, Leifeld J, Parton W J, Steinweg J M, Wallenstein M D, Wetterstedt J, Bradford M A. 2011. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology17, 3392–3404.

Freeman C, Ostle N, Kang H. 2001. An enzymic ‘latch’ on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature409, 149.

Freeman C, Ostle N J, Fenner N, Kang H. 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology & Biochemistry36, 1663–1667.

Geng M M, Wang K L, Yang N, Li F, Zou Y A, Chen X S, Deng Z M, Xie Y H. 2021. Evaluation and variation trends analysis of water quality in response to water regime changes in a typical river-connected lake (Dongting Lake), China. Environmental Pollution268, 115761.

Habersack H, Hein T, Stanica A, Liska I, Mair R, Jäger E, Hauer C, Bradley C. 2016. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Science of the Total Environment543, 828–845.

Hartley I P, Ineson P. 2008. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology & Biochemistry40, 1567–1574.

Heger A, Becker J N, Navas L K V, Eschenbach A. 2021. Factors controlling soil organic carbon stocks in hardwood floodplain forests of the lower middle Elbe River. Geoderma404, 115389.

Hooijer A, Page S, Jauhiainen J, Lee W A, Lu X X, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences9, 1053–1071.

Hu Q W, Wu Q, Yao B, Xu X L. 2015. Ecosystem respiration and its components from a Carex meadow of Poyang Lake during the drawdown period. Atmospheric Environment100, 124–132.

Kang M P, Zhao C Z, Ma M, Li X Y. 2024. Characteristics of soil organic carbon fractions in four vegetation communities of an inland salt marsh. Carbon Balance and Management19, 3.

Kennedy M J, Pevear D R, Hill R J. 2002. Mineral surface control of organic carbon in black shale. Science295, 657–660.

Lai X J, Liang Q H, Huang Q, Jiang J H, Lu X X. 2016. Numerical evaluation of flow regime changes induced by the Three Gorges Dam in the Middle Yangtze. Hydrology Research47, 149–160.

Lal R. 2008. Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutrient Cycling in Agroecosystems81, 113–127.

Lange M, Eisenhauer N, Sierra C A, Bessler H, Engels C, Griffiths R I, Mellado-Vázquez P G, Malik A A, Roy J, Scheu S, Steinbeiss S, Thomson B C, Trumbore S E, Gleixner G. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications6, 6707.

Lu Y, Xu H W. 2014. Main affecting factors of soil carbon mineralization in lake wetland. Polish Journal of Environmental Studies23, 1255–1262.

Magilligan F J, Nislow K H. 2005. Changes in hydrologic regime by dams. Geomorphology71, 61–78.

Marquardt D W. 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591–612.

Mitsch W J, Bernal B, Nahlik A M, Mander Ü, Zhang L, Anderson C J, Jorgensen S E, Brix H. 2013. Wetlands, carbon, and climate change. Landscape Ecology28, 583–597.

Mason R L, Gunst R F, Hess J L. 2003. Statistical Design and Analysis of Experiments: with Applications to Engineering and Science. John Wiley & Sons, New York.

Nabiollahi K, Eskandari S, Taghizadeh-Mehrjardi R, Kerry R, Triantafalis J. 2019. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management10, 63–77.

Oliveira J D. 2023. How do climate and land-use affect soil carbon and nitrogen stocks and the chemical properties of floodplain soils in tropical drylands? Catena, 231, 107289.

Pan B H, Xie Y H, Li F, Zou Y A, Deng Z M. 2018. Responses to sedimentation in ramet populations of the clonal plant Carex brevicuspisFrontiers in Plant Science9, 512.

Pan Y, Xie Y H, Chen X S, Li F. 2012. Effects of flooding and sedimentation on the growth and physiology of two emergent macrophytes from Dongting Lake wetlands. Aquatic Botany100, 35–40.

Qian H, Zhou Y, Xie D, Ren S, Liu M. 2021. Distribution characteristics of surface soil carbon and nitrogen along with the elevation gradient and their influencing factors in seasonal waterlogged wetlands of Poyang Lake. Acta Agriculturae Universitatis Jiangxiensis43, 1199–1210. (in Chinese)

Qin S Q, Chen L Y, Fang K, Zhang Q W, Wang J, Liu F T, Yu J C, Yang Y H. 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances5, eaau1218.

Qin X, Li F, Chen X, Xie Y. 2013. Growth responses and non-structural carbohydrates in three wetland macrophyte species following submergence and de-submergence. Acta Physiologiae Plantarum35, 2069–2074.

Ren Q, Yuan J, Wang J, Liu X, Ma S, Zhou L, Miao L, Zhang J. 2022. Water level has higher influence on soil organic carbon and microbial community in poyang lake wetland than vegetation type. Microorganisms, 10, 131.

Sakhaee A, Gebauer A, Liess M, Don A. 2022. Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms. Soil8, 587–604.

Sanders L M, Taffs K, Stokes D, Sanders C J, Enrich-Prast A, Amora L N, Marotta H. 2018. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarem, Brazil. Biogeosciences15, 447–455.

Sun Q, Qian H, Chen S, Zhou Y, Xie D, Wang W. 2023. Composition of soil grain size and its effect on organic carbon in Sizhoutou wetland of Poyang Lake. Journal of Huazhong Agricultural University42, 197–204. (in Chinese)

Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma266, 98–110.

Talukdar S, Pal S. 2017. Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. International Soil and Water Conservation Research5, 109–121.

Tang Y, Xie Y, Li F, Chen X. 2013a. Spatial distribution of emergent herbaceous wetlands in the east dongting lake during the last twenty years based on landsat data. Resources and Environment in the Yangtze Basin22, 1484–1492. (in Chinese)

Tang Y, Xie Y H, Li F, Chen X S. 2013b. Area changes of emergent herbaceous wetlands in relation to water level in East Dongting Lake, China in 1989–2011. The Journal of Applied Ecology, 24, 3229–3236. (in Chinese)

Tian S, Liu X, Jin B, Chen Y, Wang Y, Tian X, Zhao X. 2019. Effects of litter on soil organic carbon fixation in Reaumuria soongorica communities in the Sangong River basin. Acta Ecologica Sinica39, 5339–5347. (in Chinese)

Unger I M, Kennedy A C, Muzika R M. 2009. Flooding effects on soil microbial communities. Applied Soil Ecology42, 1–8.

Waldrop M P, Firestone M K. 2004. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry67, 235–248.

Walker T W N, Kaiser C, Strasser F, Herbold C W, Leblans N I W, Woebken D, Janssens I A, Sigurdsson B D, Richter A. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change8, 1021.

Wallenstein M, Allison S D, Ernakovich J, Steinweg J M, Sinsabaugh R. 2010. Controls on the temperature sensitivity of soil enzymes: A key driver of in situ enzyme activity rates. Soil Enzymology, 22, 245–258.

Wang M M, Zhang S, Guo X W, Xiao L J, Yang Y H, Luo Y Q, Mishra U, Luo Z K. 2023. Responses of soil organic carbon to climate extremes under warming across global biomes. Nature Climate Change14, 98–105.

Wang T, Deng Z M, Zhang C Y, Zou Y, Xie Y H, Li F, Xiao F J, Peng C H. 2024. Vegetation types and flood water level are dominant factors controlling the carbon sequestration potential in Dongting Lake floodplain, China. Science of the Total Environment921, 171146.

Wang X L, Han J Y, Xu L G, Wan R R, Chen Y W. 2014. Soil characteristics in relation to vegetation communities in the wetlands of poyang lake, China. Wetlands34, 829–839.

Wang X L, Xu L G, Wan R R. 2016. Comparison on soil organic carbon within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Hydrology Research47, 261–277.

Wu Q, Yao B, Xing R, Zhu L, Hu Q. 2012. Distribution pattern of soil organic carbon in Poyang Lake wetland and related affecting factors. Chinese Journal of Ecology31, 313–318. (in Chinese)

Xi L L, Chen S G, Bian H L, Peng Z H, Niu Y D, Li Y Z. 2023. Organic carbon release from litter decomposition of woody and herbaceous plants in the Dongting Lake wetlands: A comparative study. Ecohydrology & Hydrobiology23, 408–419.

Xia J, Chen J, She D. 2022. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022. Journal of Hydraulic Engineering53, 1143–1153.

Xie D, Zhou G, Zhou Y, Chen Y, Jia J, Peng X, Lu R, Yin Z, Xiong X, Yu M. 2017. Distribution characteristics of organic carbon in surface soils in Banghu Lake. Wetland Science15, 25–31. (in Chinese)

Xie Y H, Chen X S. 2008. Effects of three-gorge project on succession of wetland vegetation in dongting lake. Research of Agricultural Modernization29, 684–687. (in Chinese)

Xie Y H, Yue T, Chen X S, Feng L, Deng Z M. 2015. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology8, 738–746.

Xu N, Saiers J E. 2010. Temperature and hydrologic controls on dissolved organic matter mobilization and transport within a forest topsoil. Environmental Science & Technology44, 5423–5429.

Xu X, Zhang Q, Tan Z, Li Y, Wang X. 2015. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China. Chinese Geographical Science25, 739–756. (in Chinese)

Yin S, Bai J, Wang W, Zhang G, Jia J, Cui B, Liu X. 2019. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies. Journal of Hydrology574, 1074–1084.

Zedler J B, Kercher S. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources30, 39–74.

Zeraatpisheh M, Garosi Y, Owliaie H R, Ayoubi S, Taghizadeh-Mehrjardi R, Scholten T, Xu M. 2022. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena208, 105763.

Zhang H, Wu P B, Yin A J, Yang X H, Zhang M, Gao C. 2017. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment592, 704–713.

Zhang L, Gao J, Li Q, Zhu J, Li X. 2024. Characteristics of spatial distribution of soil carbon, nitrogen and phosphorus stoichiometry in the Wetland of Poyang Lake, China. Journal of Ecology and Rural Environment, 40, 815–823.

Zhang S, Tian J, Lu X, Tian Q J. 2023. Temporal and spatial dynamics distribution of organic carbon content of surface soil in coastal wetlands of Yancheng, China from 2000 to 2022 based on Landsat images. Catena223, 106961.

Zhang W C, Wan H S, Zhou M H, Wu W, Liu H B. 2022. Soil total and organic carbon mapping and uncertainty analysis using machine learning techniques. Ecological Indicators143, 109420.

Zheng Y X, Zhang G X, Wu Y F, Xu Y J, Dai C L. 2019. Dam effects on downstream riparian wetlands: The Nenjiang River, Northeast China. Water11, 2038.

Zhou J, Wan R, Wu X, Zhang Y. 2020. Patterns of long-term distribution of typical wetland vegetation(1987–2016) and its response to hydrological processes in Lake Dongting. Journal of Lake Sciences32, 1723–1735. (in Chinese)

Zhou W P, Shen W J, Li Y E, Hui D F. 2017. Interactive effects of temperature and moisture on composition of the soil microbial community. European Journal of Soil Science68, 909–918.

Zhu L L, Deng Z M, Xie Y H, Zhang C Y, Chen X R, Li X, Li F, Chen X S, Zou Y A, Wang W. 2022. Effects of hydrological environment on litter carbon input into the surface soil organic carbon pool in the Dongting Lake floodplain. Catena, 208, 105761.

[1] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[2] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[3] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
No Suggested Reading articles found!