Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 424-435    DOI: 10.1016/j.jia.2025.04.010
Section 1: Regional Resources and Ecosystem Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Variations and major driving factors for soil nutrients in a typical karst region in Southwest China

Miaomiao Wang1, 2, Hongsong Chen2, 3#, Wei Zhang2, 3, Kelin Wang2, 3

1 College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, China

2 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

3 Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China

 Highlights 
SOC, TN, TP, and TK concentrations exhibited moderate variations in soil and obvious positive spatial autocorrelations.
Terrestrial ecosystems in the study area were more vulnerable to soil P and K than soil N deficiencies.
Other soil properties accounted more for variations in soil nutrient concentrations than spatial and environmental variables.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

厘清关键土壤养分的空间分布及其变异机制有助于脆弱喀斯特生态系统的可持续发展。生态修复举措涉及土地利用变化等,因其实施导致的土壤养分空间分布特征变化仍不清楚。本研究基于区域尺度的样品采集利用描述性统计、地统计和空间分析方法探究0-15 cm表层土壤养分的空间变异及其驱动因素。结果表明:土壤有机碳(SOC)、全氮(TN)、全磷(TP)和全钾(TK)含量皆属中等程度变异,其变异系数分别为0.600.600.710.72;其全局莫兰指数分别为0.680.770.640.68,表明存在明显正向空间自相关;其局部莫兰指数皆较低,表明存在较大的空间变异;其最优半变异模型分别是球状、高斯、指数和指数模型。据中国第二次土壤普查养分分级标准,SOCTN是相对丰裕的,其极丰富和丰富等级面积累计占比分别为90.996.0%TP属于中等-贫乏水平,其中等和贫乏等级面积占比分别为33.730.1%TK是贫乏的,其贫乏、非常贫乏和极其贫乏等级面积累计占比87.6%。因此,相较于土壤氮,研究区内的陆地生态系统更易受土壤磷和钾的限制。此外,影响因素的方差分解表明,相较空间和环境变量,其它土壤特性对养分变异的贡献更大。以上结果可为研究区内陆地生态系统的管理提供理论依据。



Abstract  

Understanding the spatial distributions and corresponding variation mechanisms of key soil nutrients in fragile karst ecosystems can assist in promoting sustainable development.  However, due to the implementation of ecological restoration initiatives such as land-use conversions, novel changes in the spatial characteristics of soil nutrients remain unknown.  To address this gap, we explored nutrient variations and the drivers of the variation in the 0–15 cm topsoil layer using a regional-scale sampling method in a typical karst area in northwest Guangxi Zhuang Autonomous Region, Southwest China.  Descriptive statistics, geostatistics, and spatial analysis were used to assess the soil nutrient variability.  The results indicated that soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) concentrations showed moderate variations, with coefficients of variance being 0.60, 0.60, 0.71, and 0.72, respectively.  Moreover, they demonstrated positive spatial autocorrelations, with global Moran’s indices being 0.68, 0.77, 0.64, and 0.68, respectively.  However, local Moran’s index values were low, indicating large spatial variations in soil nutrients.  The best-fitting semi-variogram models for SOC, TN, TP, and TK concentrations were spherical, Gaussian, exponential, and exponential, respectively.  According to the classification criteria of the Second National Soil Census in China, SOC and TN concentrations were relatively sufficient, with the proportions of rich and very rich levels being up to 90.9 and 96.0%, respectively.  TP concentration was in the medium-deficient level, with the areas of medium and deficient levels accounting for 33.7 and 30.1% of the total, respectively.  TK concentration was deficient, with the cumulative area of extremely deficient, very deficient, and deficient levels accounting for 87.6% of the total area.  Consequently, the terrestrial ecosystems in the study area were more vulnerable to soil P and K than soil N deficiencies.  Furthermore, variance partitioning analysis of the influencing factors showed that, except for the interactions, the single effect of other soil properties accounted more for soil nutrient variations than spatial and environmental variables.  These results will aid in the future management of terrestrial ecosystems.

Keywords:  dominant factor       geostatistics        karst ecosystem        soil nutrient classification        spatial variation  
Received: 09 December 2024   Accepted: 09 March 2025 Online: 04 April 2025  
Fund: 

This research was supported by the National Natural Science Foundation of China (U2344201 and 42101316), the Natural Science Foundation of Hunan Province, China (2022JJ40866), and the Outstanding Youth Project of Education Bureau of Hunan Province, China (20B613).

About author:  Miaomiao Wang, E-mail: miaomiaowang@csuft.edu.cn; #Correspondence Hongsong Chen, E-mail: hbchs@isa.ac.cn

Cite this article: 

Miaomiao Wang, Hongsong Chen, Wei Zhang, Kelin Wang. 2026. Variations and major driving factors for soil nutrients in a typical karst region in Southwest China. Journal of Integrative Agriculture, 25(2): 424-435.

Beven K J, Kirkby M J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin24, 43–69.

Carter M R, Gregorich E G. 2006. Soil Sampling and Methods of Analysis. 2nd ed. Chemical Rubber Company Press, Boca Raton, USA.

Chen H, Li D J, Xiao K C, Wang K L. 2018. Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology32, 1400–1409.

Chen H, Luo P, Wen L, Yang L Q, Wang K L, Li D J. 2017. Determinants of soil extracellular enzyme activity in a karst region, southwest China. European Journal of Soil Biology80, 69–76.

Chen X Q, Li T, Lu D J, Cheng L, Zhou J M, Wang H Y. 2020. Estimation of soil available potassium in Chinese agricultural fields using a modified sodium tetraphenyl boron method. Land Degradation & Development31, 1737–1748.

Duan L X, Li Z W, Xie H X, Li Z M, Zhang L, Zhou Q. 2020. Large-scale spatial variability of eight soil chemical properties within paddy fields. Catena188, 104350.

Filippelli G M. 2008. The global phosphorus cycle: Past, present, and future. Elements4, 89–95.

Gallaher R N, Weldon C O, Boswell F C. 1976. A semiautomated procedure for total nitrogen in plant and soil samples. Soil Science Society of America Journal40, 887–889.

Haruna S I. 2021. Spatial and fractal characterization of selected soil nutrients along a catena. Catena204, 105443.

Heikkinen R K, Luoto M, Virkkala R, Rainio K. 2004. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. Journal of Applied Ecology41, 824–835.

Hu P L, Zhang W, Chen H S, Xu L, Xiao J, Luo Y Q, Wang K L. 2022. Lithologic control of microbial-derived carbon in forest soils. Soil Biology and Biochemistry167, 108600.

Huang C B, Zeng Y X, Wang L C, Wang S Q. 2020. Responses of soil nutrients to vegetation restoration in China. Regional Environmental Change20, 82.

Huo J Y, Liu C J, Yu X X, Chen L H, Zheng W G, Yang Y H, Yin C W. 2021. Direct and indirect effects of rainfall and vegetation coverage on runoff, soil loss, and nutrient loss in a semi-humid climate. Hydrological Processes35, e13985.

Jiang Q H, Zhou P, Liao C, Liu Y, Liu F. 2020. Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of Central China. Science of the Total Environment749, 141609.

Jiang Z C, Lian Y Q, Qin X Q. 2014. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews132, 1–12.

Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications10, 423–436.

Li D J, Wen L, Yang L Q, Luo P, Xiao K C, Chen H, Zhang W, He X Y, Chen H S, Wang K L. 2017. Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. Journal of Geophysical Research (Biogeosciences), 122, 230–242.

Li Y Q, Ma J W, Xiao C, Li Y J. 2020. Effects of climate factors and soil properties on soil nutrients and elemental stoichiometry across the Huang-Huai-Hai River Basin, China. Journal of Soils and Sediments20, 1970–1982.

Liu F, Wu H Y, Zhao Y G, Li D C, Yang J L, Song X D, Shi Z, Zhu A X, Zhang G L. 2022. Mapping high resolution National Soil Information Grids of China. Science Bulletin67, 328–340.

Liu S J, Zhang W, Wang K L, Pan F J, Yang S, Shu S Y. 2015. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China. Science of the Total Environment521, 52–58.

Liu X, Zhang W, Wu M, Ye Y Y, Wang K L, Li D J. 2019. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degradation & Development30, 60–72.

Luo M Y, Wang T W, Li Z Y, Zhang T Y, Yang J W, Li N, Li Z X. 2021. Spatial distribution characteristics of pedodiversity and its major driving factors in China based on analysis units of different sizes. Catena207, 105701.

Maila M P, Randima P, Drønen K, Cloete T E. 2006. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biology and Biochemistry38, 303–310.

Meng X, Cao J N, Wang X F, Zhang C, Lv J S. 2021. Spatial characteristics of the human factors of soil erosion at the boundary of political divisions: A spatial approach. Catena201, 105278.

Osburn E D, Badgley B D, Strahm B D, Aylward F O, Barrett J E. 2021. Emergent properties of microbial communities drive accelerated biogeochemical cycling in disturbed temperate forests. Ecology102, e03553.

Schlesinger W H. 2021. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry154, 427–432.

Tan Q Q, Chen Y Z, Han W X, Wang G A. 2020. Dynamics of soil metallic nutrients across a 6000-km temperature transect in China. Science of the Total Environment744, 140888.

Tang J, Tang X X, Qin Y M, He Q S, Yi Y, Ji Z L. 2019. Karst rocky desertification progress: Soil calcium as a possible driving force. Science of the Total Environment649, 1250–1259.

Tang X L, Zhao X, Bai Y F. 2018. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America115, 4021–4026.

Wang J M, Ouyang J M, Zhang M. 2020. Spatial distribution characteristics of soil and vegetation in a reclaimed area in an opencast coalmine. Catena195, 104773.

Wang L L, Zhang G H, Zhu P Z, Wang Z G. 2023. Correlations of C, N, P contents and their stoichiometry between plant and soil on steep gully slopes. Ecological Indicators154, 110545.

Wang M M, Chen H S, Zhang W, Wang K L. 2018. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Science of the Total Environment619, 1299–1307.

Wang M M, Chen H S, Zhang W, Wang K L. 2019. Influencing factors on soil nutrients at different scales in a karst area. Catena175, 411–420.

Wang M R, Liu H J, Lennartz B. 2021. Small-scale spatial variability of hydro-physical properties of natural and degraded peat soils. Geoderma399, 115123.

Wang R Z, Yang J J, Liu H Y. 2021. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology103, e3616.

Wang X Y, Li Y Q, Duan Y L, Wang L L, Niu Y Y, Li X H, Yan M. 2021. Spatial variability of soil organic carbon and total nitrogen in desert steppes of China’s Hexi Corridor. Frontiers in Environmental Science9, 761313.

Wen D, He N P. 2016. Forest carbon storage along the north-south transect of eastern China: Spatial patterns, allocation, and influencing factors. Ecological Indicators61, 960–967.

WRB (World Reference Base for Soil Resources 2014). 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports106, 151–156.

Xie W P, Yang J S, Yao R J, Wang X P. 2021. Spatial and temporal variability of soil salinity in the Yangtze River Estuary using electromagnetic induction. Remote Sensing13, 1875.

Yang X, Shao M A, Li T C, Zhang Q Y, Gan M, Chen M Y, Bai X. 2021. Distribution of soil nutrients under typical artificial vegetation in the desert-loess transition zone. Catena200, 105165.

Zhang C H, Qi X K, Wang K L, Zhang M Y, Yue Y M. 2017. The application of geospatial techniques in monitoring karst vegetation recovery in southwest China: A review. Progress in Physical Geography41, 450–477.

Zhang J, Wang X J, Wang J P. 2014. Impact of land use change on profile distributions of soil organic carbon fractions in the Yanqi Basin. Catena115, 79–84.

Zhang M Y, Wang K L, Liu H Y, Zhang C H, Wang J, Yue Y M, Qi X K. 2015. How ecological restoration alters ecosystem services: An analysis of vegetation carbon sequestration in the karst area of Northwest Guangxi, China. Environmental Earth Sciences74, 5307–5317.

Zhou Y, Xue J, Chen S C, Zhou Y, Liang Z Z, Wang N, Shi Z. 2020. Fine-resolution mapping of soil total nitrogen across China based on weighted model averaging. Remote Sensing12, 85.

Zhu J, Wu A C, Zhou G Y. 2021. Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China’s forest ecosystems. Scientific Reports11, 5357.

No related articles found!
No Suggested Reading articles found!