Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 448-459    DOI: 10.1016/j.jia.2024.12.035
Section 1: Regional Resources and Ecosystem Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions

Xin Wan1, 3, Dangjun Wang4, Junya Li1, 3, Shuaiwen Zhang1, 3, Linyang Li1, 3, Minghui He1,3, Zhiguo Li1, 2, Hao Jiang1, Peng Chen1, 2#, Yi Liu1, 2

1 Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

2 Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China

 Highlights 
Plantation land on the Tibetan Plateau reduces PAD and slows carbon transfer.
Aggregate differentiation of organic carbon exists in density fractions but not in SOC.
Aggregate differentiation of δ13C and Δ13C exists only in the density fractions of plantations.
The direction of δ13C enrichment from LF to PF to MF indicates carbon transfer in alpine plantations.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
为降低青藏高原碳库估算的不确定性,深入探究土壤团聚体与密度组分中的碳周转至关重要。同时,这些变化在不同土地利用类型下的异质性仍需进一步明晰。本研究基于有机碳及其13C丰度,在青藏高原土壤团聚体与密度组分的微观尺度,量化了土地利用类型对碳储存及分馏的影响。结果表明土壤团聚破碎率呈现人工林(13.1%)<灌丛(32.7%)<草地(47.9%)<农田(61.8%)的趋势,表明人工林有助于增强土壤结构稳定性。相较于农田(13.5,70.3%),人工林轻组分有机碳对碳储量的贡献提升至28.3%,而矿物结合态有机碳的贡献降至40.6%。值得注意的是,植被覆盖促进了有机碳与13C在各密度组分中的团聚体分化效应,而此现象在土壤总有机碳中并未出现。碳同位素分析结果显示,人工林中碳转移表现为从大团聚体中的轻组组分(-24.9‰)向小团聚体中的矿物组分(-19.9‰)转移。与其他三种土地利用类型相比,人工林中团聚体和密度组分的碳转移率较低,从而为青藏高原构建了相对稳定的碳库。本研究在团聚体和密度组分的微观尺度下证实了人工林能减缓土壤中碳的转移并增加碳储存,对缓解全球气候变化发挥积极作用。


Abstract  

Insight into the carbon turnover in soil aggregates and density fractions is essential for reducing the uncertainty in estimating carbon pools on the Tibetan Plateau, and how they vary with land use type is unclear.  In this study, the effect of land use type on carbon storage and fractionation was quantified based on organic carbon and its 13C abundance at the microscale of soil aggregates and density fractions in Tibetan alpine ecosystems.  The sequence of soil aggregate destruction in the land use types of plantation (13.1%)<shrubland (32.7%)<grassland (47.9%)<farmland (61.8%) shows that plantations strengthen the soil structure.  Plantation land had a greater contribution of light fraction organic carbon (28.3%) but a lower contribution of mineral-associated organic carbon (40.6%) to the carbon stock compared to farmland (13.5 and 70.3%).  Interestingly, plantation land enhanced the aggregational differentiation of organic carbon and 13C in each density fraction, whereas no such phenomenon existed in the soil organic carbon.  Carbon isotope analyses revealed that carbon transfer in the plantation land occurred from the light fraction in macroaggregates (–24.9‰) to the mineral-associated fraction in microaggregates (–19.9‰).  When compared to the other three land use types, the low transferability of carbon in aggregates and density fractions in plantation land provides a stable carbon pool for the Tibetan Plateau.  This study shows that plantations can mitigate global climate change by slowing carbon transfer and increasing carbon storage at the microscale of aggregates and density fractions in alpine regions.


Keywords:  land-use type        soil aggregate        density fractions        carbon transfer        Tibetan Plateau  
Received: 01 August 2024   Accepted: 06 December 2024 Online: 30 December 2024  
Fund: 

This work was financially supported by the National Natural Science Foundation of China (42477044, 32171648 and  U23A2017) and the Hubei Provincial Science and Technology Program, China (2025AFD451 and 2022CFB030).

About author:  Xin Wan, E-mail: wanxin20@mails.ucas.ac.cn; #Correspondence Peng Chen, E-mail: chenpeng@wbgcas.cn

Cite this article: 

Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. 2026. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions. Journal of Integrative Agriculture, 25(2): 448-459.

Atere C T, Gunina A, Zhu Z, Xiao M, Ge T. 2020. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance. Soil Biology & Biochemistry149, 107931.

Chen H, Zhu Q A, Peng C H, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S L, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology19, 2940–2955.

Chen P, Wang L, Li J Y, Wan W, Zhang R Q, Liu Y, Li Z G. 2023a. Response of soil aggregate-associated fertility and microbial communities to afforestation in the degraded ecosystem of the Danjiangkou Reservoir, China. Plant and Soil501, 171–189.

Chen P, Xu J, Zhang Z, Wang K, Li T, Wei Q, Li Y W. 2022. Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biology and Biochemistry169, 108684.

Chen P, Yuan X L, Li L Y, Li J Y, Zhang R Q, Li Z G, Liu Y. 2023b. Aggregational differentiation of soil-respired CO2 and its δ13C variation across land-use types. Geoderma432, 116384.

De Clercq T, Heiling M, Dercon G, Resch C, Aigner M, Mayer L, Mao Y, Elsen A, Steier P, Leifeld J, Merckx R. 2015. Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes. Soil Biology and Biochemistry88, 29–38.

Conrad R, Klose M, Yuan Q, Lu Y, Chidthaisong A. 2012. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry49, 193–199.

Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S Q, Chen Y L, Peng Y F, Ji C J, He H L, Smith P, Yang, Y H. 2016. The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology22, 2688–2701.

Doetterl S, Stevens A, Six J, Merckx R, Oost K V, Pinto M C, Casanova-Katny A, Muñoz C, Boudin M, Venegas E Z, Boeckx P. 2015. Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience8, 780–783.

Dong C J, Gu Y Z, Jia Y L, Wei P J, Jin J W, Deng Y F, Yang P Z, Chen S Y. 2023. Effects of freeze-thaw cycles on the size distribution and stability of soil aggregate in the permafrost regions of the Qinghai-Tibetan Plateau. Environmental Research Communications5, 095008.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal50, 627–633.

Feng J, Liu Y R, Eldridge D, Eldridge D, Huang Q, Tan W, Delgado-Baquerizo M. 2024. Geologically younger ecosystems are more dependent on soil biodiversity for supporting function. Nature Communications15, 4141.

Gao G, Huang X M, Xu H C, Wang Y, Shen W J, Zhang W, Yan J, Su X, Liao S, You Y. 2022. Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China. Forest Ecosystems9, 100078.

Ghani M I, Wang J, Li P, Pathan S I, Sial T A, Datta R, Mokhtar A, Ali E F, Rinklebe J, Shaheen S M, Liu M Y, Abdelrahman H. 2022. Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China. International Soil and Water Conservation Research11, 561–571.

Gunina A, Kuzyakov Y. 2014. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry71, 95–104.

He Y, Han X, Wang X, Wang L, Liang T. 2021. Long-term ecological effects of two artificial forests on soil properties and quality in the eastern Qinghai-Tibet Plateau. Science of the Total Environment796, 148986.

Jiménez-González M A, Álvarez A M, Carral P, Almendros G. 2020. Influence of soil forming factors on the molecular structure of soil organic matter and carbon levels. Catena189, 104501.

Justine M F, Yang W, Wu F, Tan B, Khan M N, Zhao Y. 2015. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests6, 3665–3682.

Lavallee J M, Soong J L, Cotrufo M F. 2019. Conceptualizing soil organic matter into particulate and mineralassociated forms to address global change in the 21st century. Global Change Biology26, 261–273.

Li J, Yang C, Liu X, Ji H, Shao X. 2020. Soil aggregate size influences the impact of inorganic nitrogen deposition on soil nitrification in an alpine meadow of the Qinghai-Tibet Plateau. PeerJ8, 1–17.

Li T T, Zhang J Z, Zhang H Y, Chrisite P, Zhang J L. 2022. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management. Journal of Integrative Agriculture21, 3611–3625.

Liu J, Gou X, Zhang F, Bian R, Yin D. 2021. Spatial patterns in the C: N: P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China. Catena196, 104814.

Liu X, Peng C, Zhang W, Li S, An T, Xu Y, Ge Z, Xie N H, Wang J K. 2022. Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil and Tillage Research215, 105188.

Liu Y, Hu C, Hu W, Wang L, Li Z, Pan J, Chen F. 2018a. Stable isotope fractionation provides information on carbon dynamics in soil aggregates subjected to different long-term fertilization practices. Soil and Tillage Research177, 54–60.

Liu Y, Liu W, Wu L, Liu C, Wang L, Chen F, Li Z G. 2018b. Soil aggregate-associated organic carbon dynamics subjected to different types of land use: Evidence from 13C natural abundance. Ecological Engineering122, 295–302.

Luan H A, Yuan S, Gao W, Tang J W, Li R N, Zhang H Z, Huang S W. 2021. Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field. Journal of Integrative Agriculture20, 2758–2771.

Luo Z, Feng W, Luo Y, Baldock JA, Wang E. 2017. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Global Change Biology23, 4430–4439.

Ma R, Jiang Y, Liu B, Fan H. 2021. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil and Tillage Research207, 104855.

Ma X, Asano M, Tamura K, Zhao R, Nakatsuka H, Wu Y N, Wang T. 2020. Physicochemical properties and micromorphology of degraded alpine meadow soils in the Eastern Qinghai-Tibet Plateau. Catena194, 104649.

Mohamed I, Bassouny M A, Abbas M H H, Ming Z, Cougui C, Fahad S, Saud S, Khattak J Z K, Ali S, Salem H M S, Azab A, Ali M. 2021. Rice straw application with different water regimes stimulate enzymes activity and improve aggregates and their organic carbon contents in a paddy soil. Chemosphere274, 129971.

Park H J, Baek N, Lim S S, Jeong Y J, Seo B S, Kwak J H, Lee S M, Yun S I, Kim H Y, Arshad M A, Choi W J. 2022. Coupling of δ13C and δ15N to understand soil organic matter sources and C and N cycling under different land-uses and management: A review and data analysis. Biology and Fertility of Soils59, 487–499.

Peng X, Zhu Q, Zhang Z, Hallett P D. 2017. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biology and Biochemistry109, 81–94.

Poeplau C, Don A, Six J, Kaiser M, Benbi D, Chenu C, Cotrufo M F, Derrien D, Gioacchini P, Grand S, Gregorich E, Griepentrog M, Gunina A, Haddix M, Kuzyakov Y, Kühnel A, Macdonald L M, Soong J, Trigalet S, Vermeire M L, Rovira P. 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils - A comprehensive method comparison. Soil Biology and Biochemistry125, 10–26.

Polakowski C, Sochan A, Ryżak M, Beczek M, Mazur R, Majewska K, Turski M, Bieganowski A. 2021. Measurement of soil dry aggregate size distribution using the laser diffraction method. Soil and Tillage Research211, 105023.

Rabot E, Wiesmeier M, Schlüter S, Vogel H J. 2018. Soil structure as an indicator of soil functions: A review. Geoderma314, 122–137.

Reinhart K O, Chang X, Wang S, Cui S, Zhu X, Luo C, Zhang Z H, Wilkes A. 2014. Alpine grassland soil organic carbon stock and its uncertainty in the three rivers source region of the Tibetan Plateau. PLoS ONE9, e97140.

Rui Y, Jackson R D, Cotrufo M F, Sanford G R, Spiesman B J, Deiss L, Steven W, Chao L, Matthew D. 2022. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences of the United States of America119, e2118931119.

Shi J, Deng L, Gunina A, Alharbi S, Wang K, Li J, Li J W, Liu Y L, Shangguan Z P, Kuzyakov Y. 2023. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from δ13C signatures. Soil Biology and Biochemistry180, 108988.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research79, 7–31.

Six J, Elliott ET, Paustian K, Doran J W. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal62, 1367–1377.

Six J, Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry68, A4-A9.

Tan Z, Lal R, Owens L, Izaurralde R. 2007. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research92, 53–59.

Tisdall J M, Oades J M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science33, 141–163.

Toosi E R, Kravchenko A N, Guber A K, Rivers M L. 2017. Pore characteristics regulate priming and fate of carbon from plant residue. Soil Biology and Biochemistry113, 219–230.

Volk M, Bassin S, Lehmann M F, Johnson M G, Andersen C P. 2018. 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition. Soil Biology and Biochemistry125, 178–184.

Wang C, Pan Y, Zhang Z, Xiao R, Zhang M. 2021. Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes. Science of the Total Environment777, 145852.

Wang K B, Deng L, Di D R, He X H, Shi W Y. 2020. Tracking soil carbon processes in two temperate forests at different successional stages using stable and radioactive carbon isotopes. Agriculture Ecosystems & Environment304, 107143.

Wang M, Wang S, Cao Y, Jiang M, Wang G, Dong Y. 2021. The effects of hummock-hollow microtopography on soil organic carbon stocks and soil labile organic carbon fractions in a sedge peatland in Changbai Mountain, China. Catena201, 105204.

Wang P X, Zhou Z H, Liu J J, Xu C Y, Wang K, Liu Y, Li J, Li Y, Jia Y W, Wang H. 2023. Application of an improved distributed hydrological model based on the soil-gravel structure in the Niyang River basin, Qinghai-Tibet Platea. Hydrology and Earth System Sciences27, 2681–2701.

Wang Y F, Chen P, Wang F H, Han W X, Qiao M, Dong W X, Hu C S, Zhu D, Chu H Y, Zhu Y G. 2022. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International161, 107133.

Werth M, Kuzyakov Y. 2008. Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biology and Biochemistry40, 625–637.

Wick A F, Ingram L J, Stahl P D. 2009. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biology and Biochemistry, 41, 201–209.

Wiesmeier M, Hübner R, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, von Lützow M , Kögel-Knabner I. 2014. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology20, 653–665.

Williams E K, Fogel M L, Berhe A A, Plante A F. 2018. Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter. Geoderma330, 107–116.

Xiao K Q, Zhao Y, Liang C, Zhao M, Moore O W, Otero-Fariña A, Zhu Y G, Johnson K, Peacock C L. 2023. Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment4, 135–136.

Xiao L, Yao K H, Li P, Liu Y, Zhang Y. 2020. Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the Loess Plateau of China. Journal of Soils and Sediments20, 1222–1230.

Yang C, Wang X, Li J, Zhang G, Shu H, Hu W, Han H Y, Liu R X, Guo Z C. 2024. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. Journal of Integrative Agriculture23, 669–679.

Yang X, Li T C, Shao M A. 2022. Factors controlling deep-profile soil organic carbon and water storage following Robinia pseudoacacia afforestation of the Loess Plateau in China. Forest Ecosystems9, 100079.

Yang Y, Fang J, Ji C, Ma W, Su S, Tang Z. 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles24, 1–11.

Yu Z, Zheng Y, Zhang J, Zhang C, Ma D, Chen L, Cai Y T. 2020. Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil. Geoderma362, 114088.

Zhang B, Zhang J, Liu Y, Guo Y, Shi P, Wei G. 2018. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Science of the Total Environment627, 20–27.

Zhang J, Wei D, Zhou B, Zhang L, Hao X, Zhao S, Xu X P, He P, Zhao Y, Qiu S J, Zhou W. 2021. Responses of soil aggregation and aggregate-associated carbon and nitrogen in black soil to different long-term fertilization regimes. Soil and Tillage Research213, 105157.

Zhang W, Munkholm L J, Liu X, An T, Xu Y, Ge Z, Xie N H, Li A M, Dong Y Q, Peng C, Li S Y, Wang J K. 2023. Soil aggregate microstructure and microbial community structure mediate soil organic carbon accumulation: Evidence from one-year field experiment. Geoderma430, 116324.

[1] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[2] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[3] Junyu Xie, Jianyong Gao, Hanbing Cao, Jiahui Li, Xiang Wang, Jie Zhang, Huisheng Meng, Jianping Hong, Tingliang Li, Minggang Xu. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China[J]. >Journal of Integrative Agriculture, 2024, 23(3): 1034-1047.
[4] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[5] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[6] LUAN Hao-an, YUAN Shuo, GAO Wei, TANG Ji-wei, LI Ruo-nan, ZHANG Huai-zhi, HUANG Shao-wen. Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2758-2771.
[7] LUAN Hao-an, GAO Wei, TANG Ji-wei, LI Ruo-nan, LI Ming-yue, ZHANG Huai-zhi, CHEN Xin-ping, Dainius MASILIUNAS, HUANG Shao-wen. Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2530-2548.
No Suggested Reading articles found!