Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2655-2669    DOI: 10.1016/j.jia.2024.11.039
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Development and characterization of genome-wide microsatellite molecular markers for Chinese chestnut

Shihui Chu1*, Xinghua Nie1*, Chaoxin Li1, Wenyan Sun2, Yang Liu1, Kefeng Fang2, Ling Qin1, Yu Xing1#

1 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China

2 College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China

 Highlights 
The distribution and structural features of simple repeat sequences in chestnut were clarified at the genome-wide level.
A highly universal and polymorphic SSR marker database was created using cross species resequencing data.  
The newly developed SSR markers were used to draw DNA molecular identification cards for ancient chestnut resources in northern China, thereby providing scientific support for the protection and utilization of chestnut resources in the future.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
板栗是重要的经济树种,在木材、医药和化学工业领域都有重要的应用价值。目前,缺少全基因组 SSR 分子标记信息在很大程度上限制了栗属植物遗传多样性研究和种质资源的鉴定。为了解决这个问题,我们利用 GMATA 软件对板栗基因组中的简单序列重复(SSR)标记进行了筛选,共获得了 312,302 个分子标记,密度为 434.38/Mb。并且使用 HipSTR 程序对所有的 SSR 标记进行了多态性检测,最终获得 138,208 个多态性位点。为了验证所开发的 SSR 的鉴定能力,我们从12 条染色体上随机地选取了36个标记,构建了96个燕山板栗古树种质资源的指纹图谱。结果表明,只需要6对引物就能为供试古树建立DNA指纹,证明所开发的标记具有很高的识别潜力。随后我们利用栗属植物三个种总共91份种质资源对这些标记的种间通用性和多态性进行了评估。所开发的分子标记在种间有 94% 的扩增,PIC 值为 0.859。聚类分析结果显示新开发的标记能够用于种内和跨种间材料的区分。结果表明,所开发的分子标记具有基因型多样性的潜力,可为板栗的遗传多样性研究、品种鉴定、亲缘关系分析、优良产品选择和核心种质资源构建提供参考,也可为栗类的分子设计、改良育种和开发种质资源奠定了坚实的基础。


Abstract  

Chestnuts are important economic forest tree species with enormous application value in the wood, medicine, and chemical industries. Currently, the limited genome-wide SSR molecular marker information on chestnut resources significantly limits research on genetic diversity and identification of chestnut resources. To address this issue, we used GMATA to screen simple sequence repeat (SSR) markers throughout the Chinese chestnut genome. A total of 312,302 molecular markers were obtained with a density of 434.38/Mb. Subsequently, all SSR markers were examined for polymorphism using the HipSTR program and 138,208 polymorphic loci were finally obtained. To verify the identification ability of the developed SSR, we randomly selected 36 markers on 12 chromosomes to construct fingerprint maps of 96 ancient chestnut resources from the Yanshan Mountains. The results showed that only 6 pairs of primers were required to create a unique DNA fingerprint of the tested ancient trees, showing that the developed markers have high identification potential. We then evaluated the inter-specific universality and polymorphism of these markers using three species, including 91 chestnut plants. The molecular markers amplified 94% of the interspecies with a PIC value of 0.859. Cluster analysis revealed that testing resources using these developed markers can be well differentiated and these markers have been widely used to identify interspecific boundaries. These results proved that the developed molecular markers have the potential for genotypic diversity, which can provide references for genetic diversity research, variety identification, kinship analysis, selection of good products, and construction of core germplasm resources of chestnut and even chestnut plants. They lay a solid foundation for the molecular design of hybrids to improve breeding and develop germplasm resources.

Keywords:  Chinese chestnut       molecular marker        genomic SSRs  
Received: 28 February 2024   Online: 28 November 2024   Accepted: 17 October 2024
Fund: 

This work was supported by the National Key Research & Development Program of China (2024YFD2200602) and the National Natural Science Foundation of China (32471917).  

About author:  Shihui Chu, E-mail: shihuichul@163.com; Xinghua Nie, E-mail: niexinghuabua@163.com; #Correspondence Yu Xing, E-mail: xingyu@bua.edu.cn * These authors contributed equally to this study.

Cite this article: 

Shihui Chu, Xinghua Nie, Chaoxin Li, Wenyan Sun, Yang Liu, Kefeng Fang, Ling Qin, Yu Xing. 2025. Development and characterization of genome-wide microsatellite molecular markers for Chinese chestnut. Journal of Integrative Agriculture, 24(7): 2655-2669.

Ai Y, Chen L, Xie T, Chen J, Lan S, Peng D. 2019. Construction of core collection of Cymbidium ensifolium cultivars based on SSR fluorescent markers. Acta Horticulturae Sinica46, 1999–2008. (in Chinese)

Akpunar B E, Orman E, Yagmur B, Tanyolac M B, Ates D. 2024. Identification of SNP markers linked to calcium and phosphorus accumulation in walnut (Juglans regia L.) fruit by GWAS. Scientia Horticulturae335, 113341.

Arbeiter A B, Hladnik M, Jakše J, Bandelj D. 2021. First set of microsatellite markers for immortelle (Helichrysum italicum (Roth) G. Don): A step towards the selection of the most promising genotypes for cultivation. Industrial Crops and Products162, 113298.

Bansal M, Morley R J, Nagaraju S K, Dutta S, Mishra A K, Selveraj J, Kumar S, Niyolia D, Harish S M, Abdelrahim O B. 2022. Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange. Science375, 455–460.

Baziar G, Jafari M, Noori M S S, Samarfard S. 2018. Evaluation of genetic diversity among Persian fig cultivars by morphological traits and RAPD markers. HortScience53, 613–619.

Bhattarai G, Shi A, Kandel D R, Solis-Gracia N, Da Silva J A, Avila C A. 2021. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Scientific Reports11, 9999.

Biet E, Sun J S, Dutreix M. 1999. Conserved sequence preference in DNA binding among recombination proteins: An effect of ssDNA secondary structure. Nucleic Acids Research27, 596–600.

Bonthala B, Abdin M, Arya L, Pandey C D, Sharma V, Yadav P, Verma M. 2022. Genome-wide SSR markers in bottle gourd: Development, characterization, utilization in assessment of genetic diversity of National Genebank of India and synteny with other related cucurbits. Journal of Applied Genetics63, 237–263.

Boutsika A, Sarrou E, Cook C M, Mellidou I, Avramidou E, Angeli A, Martens S, Ralli P, Letsiou S, Selini A. 2021. Evaluation of parsley (Petroselinum crispum) germplasm diversity from the Greek Gene Bank using morphological, molecular and metabolic markers. Industrial Crops and Products170, 113767.

Christopoulos M V, Rouskas D, Tsantili E, Bebeli P J. 2010. Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by Inter-Simple Sequence Repeat (ISSR) markers. Scientia Horticulturae125, 584–592.

Duan Y, Ke J, Zhang H, He Y, Sun G, Sun X. 2014. Autophagic cell death of human hepatoma G2 cells mediated by procyanidins from Castanea mollissima Bl. Shell-induced reactive oxygen species generation. Chemico-Biological Interactions224, 13–23.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology14, 2611–2620.

Falush D, Stephens M, Pritchard J K. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics164, 1567–1587.

FAO (Food and Agriculture Organization of the United Nations). 2022. FAOSTAT. [2022-1-1]. https://www.fao.org/faostat/zh/#data/QCL/visualize

Fernandez-Agullo A, Freire M S, Antorrena G, Pereira J A, Gonzalez-Alvarez J. 2014. Effect of the extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Separation Science and Technology49, 267–277.

Gao Y, Wang D, Wang K, Cong P, Li L, Piao J. 2020. Genetic diversity and population structure of 17 species of Malus Mill. native to China based on fluorescent SSR analysis. Journal of Fruit Science37, 1611–1622. (in Chinese)

Guo W J, Ling J, Li P. 2009. Consensus features of microsatellite distribution: Microsatellite contents are universally correlated with recombination rates and are preferentially depressed by centromeres in multicellular eukaryotic genomes. Genomics93, 323–331.

Han J C, Liu Q X, Wang G P, Kong D J, Zhang X Z. 2006. The progress of the genetic diversity studies on Castanea (Tourn.) L. Acta Agriculturae Boreali-Sinica, 21, 129–132. (in Chinese)

He X D, Zhang J W, Tian X Y, Jiao Z Y, Dou Q Q. 2021. Genetic relationship analysis and fingerprint construction of Carya illinoensis varieties. Forestry Scientific Research34, 95–102.

Hou S, Ren X, Yang Y, Wang D, Du W, Wang X, Li H, Han Y, Liu L, Sun Z. 2022. Genome-wide development of polymorphic microsatellite markers and association analysis of major agronomic traits in core germplasm resources of tartary buckwheat. Frontiers in Plant Science13, 819008.

Hu Z P, Zhao H, Chen C, Yuan Z Y. 2018. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today316, 214–222.

Huang W, Cheng L, Zhou Z, Liu J. 2010. SSR analysis on genetic diversity of wild Chinese chestnut populations. Journal of Fruit Science27, 227–232.

Huang X, Yang M, Guo J, Liu J, Chu G, Xu Y. 2022. Genome-wide survey and analysis of microsatellites in waterlily, and potential for polymorphic marker development. Genes13, 1782.

Jiang X, Tang D, Gong B. 2017. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) cultivars based on SSR markers. Brazilian Journal of Botany40, 235–246.

Jiang X B, Tang D, Gong B C, Lai J S. 2015. Genetic diversity and association analysis of local cultivars of Chinese chestnut based on SSR markers. Acta Horticulturae Sinica42, 2478–2488. (in Chinese)

Kruglyak S, Durrett R T, Schug M D, Aquadro C F. 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences of the United States of America95, 10774–10778.

Kubisiak T, Nelson C, Staton M, Zhebentyayeva T, Smith C, Olukolu B, Fang G C, Hebard F, Anagnostakis S, Wheeler N. 2013. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes9, 557–571.

Lal M, Munda S, Bhandari S, Saikia S, Begum T, Pandey S K. 2022. Molecular genetic diversity analysis using SSR marker amongst high solasodine content lines of Solanum khasianum CB Clarke, an industrially important plant. Industrial Crops and Products184, 115073.

Lei L, Wang H B, Li Y H, Chen S Q, Wu M X, Dou M J, Qi Y Y, Fang J P, Zhang J S. 2022. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneumJournal of Integrative Agriculture21, 3230–3244.

Li Y C, Korol A B, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology11, 2453–2465.

Liu C, Wang S, Chang X, Wang S. 2015. Structural and functional properties of starches from Chinese chestnuts. Food Hydrocolloids43, 568–576.

Liu D, Chen W, Lin S, Xu W, Guo X, Huang P. 2017. Analysis of genetic relationship of pummelo germplasms by SSR markers in Zhejiang Province. Journal of Fruit Science34, 166–174. (in Chinese)

Liu G, Cao J, Lan Y, Wang J. 2017. Construction of SSR fingerprint on 33 ancient chestnut trees. Acta Agriculturae Universitatis Jiangxiensis39, 134–139. (in Chinese)

Liu K, Muse S V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics21, 2128–2129.

Liu S, Liu H, Wu A, Hou Y, An Y, Wei C. 2017. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding37, 1–14.

Liu W, Xiao Z, Jiang N, Fan C, Xiang X. 2023. Genome-wide development of polymorphic SNP markers and evaluation of genetic diversity of litchi (Litchi chinensis Sonn.). Plants12, 3949.

Mellano M G, Beccaro G L, Donno D, Marinoni D T, Boccacci P, Canterino S, Cerutti A, Bounous G. 2012. Castanea spp. biodiversity conservation: Collection and characterization of the genetic diversity of an endangered species. Genetic Resources and Crop Evolution59, 1727–1741.

De La Montaña Míguelez J, Míguez Bernárdez M, Garcia Queijeiro J. 2004. Composition of varieties of chestnuts from Galicia (Spain). Food Chemistry84, 401–404.

Müller M, Nelson C D, Gailing O. 2018. Analysis of environment-marker associations in American chestnut. Forests9, 695.

Nie X H, Li Y R, Tian S L, Wang X F, Su S C, Cao Q Q, Xing Y, Qin L. 2022a. Construction of DNA fingerprints of Chinese chestnut varieties (lines) and analysis of their genetic diversity. Journal of Horticulture49, 2313–2324. (in Chinese)

Nie X H, Liu S, Wang B Y, Li Y, Lian M Q, Qin L, Zheng R J, Xing Y. 2022b. Analysis of genetic structure and construction of fingerprints based on SSR markers of main planted Japanese chestnut varieties (lines) in China. Journal of Nuclear Agriculture36, 2104–2114. (in Chinese)

Nie X H, Wang Z H, Liu N W, Li S, Yan B Q, Yu X, Zhang Q, Fang K F, Zhao Y L, Xin C. 2021. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. Journal of Integrative Agriculture20, 1277–1286.

Nie X H, Zhang Y, Chu S H, Yu W J, Liu Y, Yan B Q, Zhao S Q, Gao W L, Li C X, Shi X T, Zheng R J, Fang K F, Qin L, Xing Y. 2024. New insights into the evolution and local adaptation of the genus Castanea in east Asia. Horticulture Research11, uhae147.

Nishio S, Ruan S, Sawamura Y, Terakami S, Takada N, Takeuchi Y, Saito T, Inoue E. 2020. Genetic evidence that Chinese chestnut cultivars in Japan are derived from two divergent genetic structures that originated in China. PLoS ONE15, e0235354.

Pandey S, Yadav P S, Ansari W A, Pandey M, Yang L, Singh B, Dubey R K, Singh P M, Singh J. 2021. Development of high conserved cross-species microsatellite markers from cucumber genome and their applicability in genetic diversity and comparative mapping. Scientia Horticulturae288, 110408.

Patil P G, Singh N V, Bohra A, Raghavendra K P, Mane R, Mundewadikar D M, Babu K D, Sharma J. 2021. Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR markers from pomegranate (Punica granatum L.) cv. Tunisia genome. Frontiers in Plant Science12, 645055.

Peakall R, Smouse P. 2012. 6: Genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics28, 2537–2539.

Peakall R, Smouse P E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes6, 288–295.

Sadeqi M B, Dadshani S, Yousefi M, Ajir G M. 2019. Investigation of genetic diversity in afghan bread wheat genotypes using SSR and AFLP markers. Turkish Journal of Agriculture (Food Science and Technology)7, 1263–1267.

Sardar S S, Pradhan K, Shukla R P, Saraswat R, Srivastava A, Jena S N, Das A B. 2016. In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in cultivars/breeding lines in Odisha, India. Molecular Breeding36, 1–16.

Savadi S, Muralidhara B, Venkataravanappa V, Adiga J, Manjunatha K, Patil B. 2022. De novo transcriptome assembly and its utility in development and characterization of the first set of genic SSR markers in cashew. Industrial Crops and Products189, 115734.

Selkoe K A, Toonen R J. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters9, 615–629.

Shi J, Huang S, Fu D, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H. 2013. Evolutionary dynamics of microsatellite distribution in plants: Insight from the comparison of sequenced BrassicaArabidopsis and other angiosperm species. PLoS ONE8, e59988.

Song L, Li X, Peng F, Niu K, Xie Y. 2017. Chemical composition, physiological activity and application of chestnut shell. Journal of Hebei Normal University of Science & Technology31, 30–33. (in Chinese)

Subirana J A, Messeguer X. 2008. Structural families of genomic microsatellites. Gene408, 124–132.

Taberlet P, Luikart G. 1999. Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society68, 41–55.

Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research12, 4127–4138.

Unamba C I, Nag A, Sharma R K. 2015. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Frontiers in Plant Science6, 1074.

Vallejo V A, Warner R M. 2021. Identifying quantitative trait loci for steviol glycoside production in Stevia rebaudiana using transcriptome-derived SSRs. Industrial Crops and Products161, 113176.

De Vasconcelos M D C B M, Bennett R N, Rosa E A, Cardoso J V F. 2007. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. Journal of Agricultural and Food Chemistry55, 3508–3516.

De Vasconcelos M D C B, Nunes F, Viguera C G, Bennett R N, Rosa E A, Ferreira-Cardoso J V. 2010. Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. International Journal of Food Science & Technology45, 496–505.

Waits L P, Luikart G, Taberlet P. 2001. Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Molecular Ecology10, 249–256.

Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, Huang H. 2019. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience8, giz112.

Xu Y, Liu C, Yang X, Wu K, Gong B. 2023. Genome-wide microsatellite characterization and marker development in Diospyros oleiferaIndustrial Crops and Products203, 117182.

You T T, Zhou S K, Wen J L, Ma C, Xu F. 2014. Chemical composition, properties, and antimicrobial activity of the water-soluble pigments from Castanea mollissima shells. Journal of Agricultural and Food Chemistry62, 1936–1944.

Zhang L, Gao H Y, Baba M, Okada Y, Okuyama T, Wu L J, Zhan L B. 2014. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complementary and Alternative Medicine14, 1–9.

Zhang S, Tian L, Zhang Y, Zhao H, Zhao J, Guo J, Zhu G P. 2019. De novo transcriptome assembly of the fresh-cut white husk of Juglans cathayensis Dode: Insights for enzymatic browning mechanism of fresh-cut husk of walnut. Scientia Horticulturae257, 108654.

Zhang X F, Zhang S H, Li Y, Guo Y, Wang G P. 2020. Genetic diversity analysis of chestnut germplasm in Yanshan region based on SSR markers. Journal of China Agricultural University25, 61–71. (in Chinese)

Zhang Y, Liu L, Liang W. 2005. China Fruit’s Monograph-Chestnut and Hazelnut. China Forestry Publishing HouseBeijing. (in Chinese)

Zhao Q, Feng H, Wang L. 2014. Dyeing properties and color fastness of cellulase-treated flax fabric with extractives from chestnut shell. Journal of Cleaner Production80, 197–203.

Zheng Z, Zhang N, Huang Z, Zeng Q, Huang Y, Qi Y. 2022. Genome survey sequencing and characterization of simple sequence repeat (SSR) markers in Platostoma palustre (Blume) AJ Paton (Chinese mesona). Scientific Reports12, 355.

[1] GAO Yue-rong, SUN Jia-chen, SUN Zhi-lin, XING Yu, ZHANG Qing, FANG Ke-feng, CAO Qing-qin, QIN Ling. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1033-1043.
No Suggested Reading articles found!