Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2670-2685    DOI: 10.1016/j.jia.2024.08.017
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Amino acid substitutions in succinate dehydrogenase complex conferring resistance to the SDHI fungicide pydiflumetofen in Cochliobolus heterostrophus causing southern corn leaf blight
Jiazhi Sun1, 3, 4, Bingyun Yang1, 3, 4, Lingmin Xia1, 3, 4, Rui Yang1, 3, 4, Chaoyang Ding1, 3, 4, Yang Sun1, 3, 4, Xing Chen1, 3, 4, Chunyan Gu2, Xue Yang2#, Yu Chen1, 3, 4#

1 School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

2 Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

3 Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China

4 Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

 Highlights 
The mutations of ChSdhBH277Y, ChSdhBI279T and ChSdhDH133Y in SDH of C. heterostrophus resulted in reduced biological fitness.
The mutations of ChSdhBH277Y, ChSdhBI279T and ChSdhDH133Y  were responsible for the resistance to Pyd in C. heterostrophus.
The binding affinity between Pyd and SdhB/SdhD was impaired by the the mutation of ChSdhBH277Y, ChSdhBI279T or ChSdhDH133Y.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米作为重要的粮、饲、工兼用作物,是重要的战略资源,对我国经济发展具有举足轻重的作用与意义。在实际生产过程中,玉米受多种病虫害的威胁,其中由异旋孢腔菌(Cochlibolus heterostrophus)侵染引起的玉米小斑病严重影响玉米产量与品质,是制约玉米高产与稳产的重要因素之一。氟唑菌酰羟胺作为一种新型的琥珀酸脱氢酶抑制剂类杀菌剂(Succinate dehydrogenase inhibitor, SDHI),已被证实对玉米小斑病具有良好的防效,然而关于玉米小斑病菌氟唑菌酰羟胺的抗药性机制研究较少。本研究通过室内药剂驯化的方法获得了5株抗氟唑菌酰羟胺的突变体。序列比对分析表明,所有抗药性突变体的琥珀酸脱氢酶ChSdhB/D亚基上发生氨基酸位点突变(ChSdhBH277YChSdhBI279TChSdhDH133Y);根据抗性倍数(Resistance factor, RF)抗药性突变体可分为2种抗性水平:中抗(4株,10<RF<100)和高抗(1株,RF>100);生物适合度结果表明,与亲本菌株相比抗药性突变体在菌丝生长速率、产孢量及菌丝干重均有所降低而致病性增强说明玉米小斑病菌对氟唑菌酰羟胺产生抗药性突变后,其生物适合度会有一定程度降低;交互抗性研究结果表明,抗药性突变体对同类药剂三氟吡啶胺存在正交互抗性,与其他种类药剂咪鲜胺、咯菌腈、异菌脲和吡唑醚菌酯之间无交互抗性;采用同源建模及分子对接技术,模拟了抗药性突变体及其亲本菌株ChSdhB/D亚基与氟唑菌酰羟胺的结合模式,并分析了“药-靶”结合能与抗药性之间的关联性,结果表明,ChSdhBH277YChSdhBI279TChSdhDH133Y的突变均降低了氟唑菌酰羟胺ChSdhB/D亚基之间的结合能,分别-74.07-74.07-152.52 kcal/mol降至-3.90-4.95-9.93 kcal/mol,说明ChSdhB/D亚基的氨基酸位点突变介导了玉米小斑病菌氟唑菌酰羟胺抗药性的产生。本研究结果将为SDHI类杀菌剂合理用于玉米小斑病的科学防控及抗药性管控措施的制定提供理论依据,抗药性机制的解析将为SDHI类药剂的改良优化提供参考



Abstract  

Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus, is a widespread foliar disease that has a substantial impact on maize yield in the Huang-Huai-Hai Region of China.  Pydiflumetofen (Pyd), a new succinate dehydrogenase inhibitor (SDHI), has been found as a promising fungicide for the efficient control of SCLB, however, resistance of Cheterostrophus to Pyd has not been studied well.  Here, five Pyd-resistant mutants were generated through fungicide adaptation.  Sequence alignment analysis revealed that these mutants primarily mutated in ChSdhB and ChSdhD, with three genotypes: ChSdhBH277Y, ChSdhBI279T and ChSdhDH133Y, exhibiting two distinct categories of resistance: high resistance (HR) and moderate resistance (MR), among which the resistance factors were 214.22 and 44.33–53.67, respectively.  These mutants were more pathogenic than the wild-type parental strains, but there was a significant reduction in mycelial growth rate and sporulation in the resistant mutants, indicating a significant fitness cost associated with resistance to Pyd.  In addition, this study revealed a positive cross-resistance between Pyd and another SDHI fungicide cyclobutrifluram.  However, no cross-resistance was found between Pyd and other classes of fungicides, including prochloraz, fludioxonil, iprodione or pyraclostrobin.  Homology modeling and molecular docking further confirmed that point mutations of ChSdhBH277Y, ChSdhBI279T, and ChSdhDH133Y could reduce binding affinity between Pyd and its target subunits from –74.07, –74.07, –152.52 kcal mol–1 to –3.90, –4.95, –9.93 kcal mol–1, respectively.  These findings not only provided valuable insights for managing SCLB caused by Cheterostrophus, but also enhanced our understanding of molecular mechanism underlying plant pathogen resistance to Pyd.

Keywords:  Cochliobolus heterostrophus        pydiflumetofen       SDHI resistance       resistance mechanism       point mutation  
Received: 01 June 2024   Online: 22 August 2024   Accepted: 04 July 2024
Fund: This study was supported by the National Key Research and Development Program of China (2023YFD1401504), the Open Project of Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, China (PKLPRMGVP202402), the Programs for the Scientific Research Activities of Academic and Technical Leaders of Anhui Province, China (2020D251), the Development Fund for Talent Personnel of Anhui Agricultural University, China (rc342006), the University Synergy Innovation Program of Anhui Province, China (GXXT-2021-059) and Anhui Province Agricultural Eco-Environmental Protection and Quality Safety Industry Technology System, China.

About author:  #Correspondence Xue Yang, E-mail: yangxue2121@163.com; Yu Chen, E-mail: chenyu66891@sina.com

Cite this article: 

Jiazhi Sun, Bingyun Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Yang Sun, Xing Chen, Chunyan Gu, Xue Yang, Yu Chen. 2025. Amino acid substitutions in succinate dehydrogenase complex conferring resistance to the SDHI fungicide pydiflumetofen in Cochliobolus heterostrophus causing southern corn leaf blight. Journal of Integrative Agriculture, 24(7): 2670-2685.

Ali F, Muneer M, Rahman H, Noor M, Shahwar D, Shaukat S, Yan J. 2011. Heritability estimates for yield and related traits based on testcross progeny performance of resistant maize inbred lines. Journal of Food Agriculture and Environment9, 438–443.

Amiri A, Heath S M, Peres N A. 2014. Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Disease98, 532–539.

Avenot H, Sellam A, Karaoglanidis G, Michailides T. 2008. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with boscalid resistance in Alternaria alternata from California pistachioPhytopathology98, 736–742.

Avenot H F, Michailides T J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection29, 643–651.

Balint-Kurti P, Zwonitzer J, Pe M, Pea G, Lee M, Cardinal A. 2008. Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Phytopathology98, 315–320.

Bardas G A, Veloukas T, Koutita O, Karaoglanidis G S. 2010. Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science66, 967–973.

Bruns H A. 2017. Southern corn leaf blight: A story worth retelling. Agronomy Journal109, 1218–1224.

Chen F, Tsuji S S, Li Y, Hu M, Bandeira M A, Câmara M P S, Michereff S J, Schnabel G. 2020. Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology162, 60–68.

Chen W, Wei L, Zhao W, Wang B, Zheng H, Zhang P, Lou T, Duan Y, Hou Y, Zhou M. 2021. Resistance risk assessment for a novel succinate dehydrogenase inhibitor pydiflumetofen in Fusarium asiaticumPest Management Science77, 538–547.

Duan Y, Yang Y, Li T, Zhao D, Cao J, Shi Y, Wang J, Zhou M. 2016. Development of a rapid and high-throughput molecular method for detecting the F200Y mutant genotype in benzimidazole-resistant isolates of Fusarium asiaticumPest Management Science72, 2128–2135.

Dai Y, Gan L, Ruan H, Shi N, Du Y, Liao L, Wei Z, Teng Z, Chen F, Yang X. 2018. Sensitivity of Cochliobolus heterostrophus to three demethylation inhibitor fungicides, propiconazole, diniconazole and prochloraz, and their efficacy against southern corn leaf blight in Fujian Province, China. European Journal of Plant Pathology152, 447–459.

Fattoretti P, Bertoni-Freddari C, Caselli U, Paoloni R, Meier-Ruge W. 1998. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging. Mechanisms of Ageing and Development101, 175–182.

Fraaije B A, Bayon C, Atkins S, Cools H J, Lucas J A, Fraaije M W. 2012. Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Molecular Plant Pathology13, 263–275.

Gutiérrez-Alonso O, Hawkins N J, Cools H J, Shaw M W, Fraaije B A. 2017. Dose-dependent selection drives lineage replacement during the experimental evolution of SDHI fungicide resistance in Zymoseptoria triticiEvolutionary Applications, 10, 1055–1066.

Han X, Zhao H, Ren W, Lv C, Chen C. 2017. Resistance risk assessment for fludioxonil in Bipolaris maydisPesticide Biochemistry and Physiology139, 32–39.

Hou Y, Chen Y, Wu L, Wang J, Chen C, Zhou M. 2018. Baseline sensitivity of Bipolaris maydis to the novel succinate dehydrogenase inhibitor benzovindiflupyr and its efficacy. Pesticide Biochemistry and Physiology149, 81–88.

Huang S, Millar A H. 2013. Succinate dehydrogenase: The complex roles of a simple enzyme. Current Opinion in Plant Biology16, 344–349.

Van Inghelandt D, Melchinger A E, Martinant J P, Stich B. 2012. Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biology12, 1–15.

Kaushal M, Sharma R, Vaidya D, Gupta A, Saini H K, Anand A, Thakur C, Verma A, Thakur M, Priyanka A. 2023. Maize: An underexploited golden cereal crop. Cereal Research Communications51, 3–14.

Lalève A, Gamet S, Walker A S, Debieu D, Toquin V, Fillinger S. 2014. Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environmental Microbiology16, 2253–2266.

Li J. 2009. Production, breeding and process of maize in China. In: Handbook of Maize: Its Biology. Springer, New York. pp. 563–576.

Li H X, Nuckols T A, Harris D, Stevenson K L, Brewer M T. 2019. Differences in fungicide resistance profiles and multiple resistance to a quinone-outside inhibitor (QoI), two succinate dehydrogenase inhibitors (SDHI), and a demethylation inhibitor (DMI) for two Stagonosporopsis species causing gummy stem blight of cucurbits. Pest Management Science75, 3093–3101.

Li S, Li X, Zhang H, Wang Z, Xu H. 2021. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorganic & Medicinal Chemistry50, 116476.

Li Y, Wang Y, Li X, Fan H, Gao X, Peng Q, Li F, Lu L, Miao J, Liu X. 2023. Resistant risk and resistance-related point mutation in SdhC1 of pydiflumetofen in Fusarium pseudograminearumPest Management Science79, 4197–4207.

Lin X, Wu Y, Chen X, Kong G. 2014. Determination of adenosine phosphate in tobacco leaf by UPLC with phenol-TEA pretreatment. Acta Tabacaria Sinica20, 26–31.

Liu Y, Sun Y, Bai Y, Cheng X, Li H, Chen X, Chen Y. 2023. Study on mechanisms of resistance to SDHI fungicide pydiflumetofen in Fusarium fujikuroiJournal of Agricultural and Food Chemistry, 71, 14330–14341.

Mair W, Lopez-Ruiz F, Stammler G, Clark W, Burnett F, Hollomon D, Ishii H, Thind T S, Brown J K, Fraaije B. 2016. Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Management Science72, 1449–1459.

Meerburg B, Verhagen A, Jongschaap R, Franke A, Schaap B, Dueck T, Van Der Werf A. 2009. Do nonlinear temperature effects indicate severe damages to US crop yields under climate change? Proceedings of the National Academy of Sciences of the United States of America106, E120.

Oldenburg E, Höppner F, Ellner F, Weinert J. 2017. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research33, 167–182.

Ons L, Bylemans D, Thevissen K, Cammue B P. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms8, 1930.

Rahman V, Meena K R, Al-Ani L K T, Singh A, Kumar A. 2023. Bacillus velezensis strain improvement to control Helminthosporium maydis causing southern corn leaf blight disease in maize. European Journal of Plant Pathology167, 301–313.

Sang H, Lee H B. 2020. Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi. Research in Plant Disease26, 1–7.

Scalliet G, Bowler J, Luksch T, Kirchhofer-Allan L, Steinhauer D, Ward K, Niklaus M, Verras A, Csukai M, Daina A. 2012. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicolaPLoS ONE7, e35429.

Schoch C L, Seifert K A, Huhndorf S, Robert V, Spouge J L, Levesque C A, Chen W, Consortium F B, List F B C A, Bolchacova E. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America109, 6241–6246.

Shao W, Wang J, Wang H, Wen Z, Liu C, Zhang Y, Zhao Y, Ma Z. 2022. Fusarium graminearum FgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen. Pest Management Science78, 1780–1788.

Singh R, Srivastava R. 2016. Southern corn leaf blight-an important disease of maize: An extension fact sheet. Indian Research Journal of Extension Education12, 324–327.

Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J. 1998. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicolaCurrent Genetics34, 393–398.

Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D. Hansen R, Widdison S, Logan G, Dietrich R A. 2019. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria triticiPLoS Pathogens15, e1007780.

Sun B, Zhu G, Xie X, Chai A, Li L, Shi Y, Li B. 2022. Double mutations in succinate dehydrogenase are involved in SDHI resistance in Corynespora cassiicolaMicroorganisms10, 132.

Sun J, Pang C, Cheng X, Yang B, Jin B, Jin L, Qi Y, Sun Y, Chen X, Liu W, Chen Y. 2023. Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydisPesticide Biochemistry and Physiology190, 105319.

Sun Y, Wang K, Yang B, Yang J, Liu B, Chen X, Liu W, Chen Y. 2024. Anti-fungal activity of a novel succinate dehydrogenase inhibitor pydiflumetofen against Bipolaris maydisCrop Protection178, 106570.

Veloukas T, Leroch M, Hahn M, Karaoglanidis G S. 2011. Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Disease95, 1302–1307.

Vh R K, Thamizhamuthu R. 2023. A combined architecture of image processing techniques and deep neural network for the classification of corn plant diseases. In: 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS). Institute of Electrical and Electronics Engineers, Coimbatore, India. pp. 898–903.

Wang Y, Yang D, Yu Z. 2023. New lactones produced by Streptomyces sp. SN5431 and their antifungal activity against Bipolaris maydisMicroorganisms11, 616.

Yin Y, Kim Y, Xiao C. 2011. Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. Phytopathology101, 986–995.

Yoon M Y, Cha B, Kim J C. 2013. Recent trends in studies on botanical fungicides in agriculture. The Plant Pathology Journal29, 1.

Yu H, Jia W, Zhao M, Li L, Liu J, Chen J, Pan H, Zhang X. 2022. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophusPest Management Science78, 5133–5141.

[1] Mingmei Wu, Rui Dong, Yan Zhang, Haojie Liao, Tian Tian, Dandan Xu, Youjun Zhang, Zhaojiang Guo, Shaoli Wang.
Overexpression of TuABCC4 is associated with abamectin resistance in Tetranychus urticae Koch
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2299-2310.
[2] Kaixin Gu, Ran Wei, Yidan Sun, Xiaoxin Duan, Jing Gao, Jianxin Wang, Yiping Hou, Mingguo Zhou, Xiushi Song. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J]. >Journal of Integrative Agriculture, 2025, 24(2): 623-637.
[3] Jizhen Wei, Min Zhang, Pin Li, Zhongyuan Deng, Xinming Yin, Shiheng An, Xianchun Li.

Functional assessment of cadherin as a shared mechanism for cross/dual resistance to Cry1Ac and Cry2Ab in Helicoverpa zea [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1604-1617.

[4] SHI Niu-niu, LIAN Jin-pan, QIU De-zhu, CHEN Fu-ru, DU Yi-xin. Resistance risk and molecular mechanism associated with resistance to picoxystrobin in Colletotrichum truncatum and Colletotrichum gloeosporioides[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3681-3693.
[5] HAN Yong-chao, ZENG Xiang-guo, XIANG Fa-yun, ZHANG Qing-hua, GUO Cong, CHEN Feng-ying, GU Yu-chen. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1391-1400.
[6] LI Yong-gang, YANG Ming-xiu, LI Yan, LIU Wen-wen, WEN Jing-zhi and LI Yong-hao. Differential Gene and Protein Expression in Soybean at Early Stages of Incompatible Interaction with Phytophthora sojae[J]. >Journal of Integrative Agriculture, 2011, 10(6): 902-910.
No Suggested Reading articles found!