Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2770-2791    DOI: 10.1016/j.jia.2024.05.014
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection

Shanshan Qi, Haoyang Wu, Donghua Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun#

College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China

 Highlights 
Porcine epidemic diarrhea virus (PEDV) has evolved a pathogenic mechanism whereby intestinal microbiotal metabolites enhance its infection during its interaction with the host.
The metabolite of Clostridium perfringens, palmitic acid, can enhance PEDV infection.
Palmitic acid enhances virion stability and the viral membrane fusion process by mediating the palmitoylation of the PEDV S protein.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
宿主肠道微生物群已成为宿主与肠道病毒相互作用的第三要素,并可能直接或间接地影响肠道病毒的感染和致病过程。目前,PEDV与肠道菌群相互作用及其对病毒感染作用相关机制尚不清楚,限制了病毒感染和致病机制的理解以及有效预防策略的设计。在本研究中,我们利用基于16S rRNA的Illumina MiSeq高通量测序技术对猪肠道冠状病毒猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)感染介导仔猪肠道菌群变化进行鉴定,进一步深入研究了变化的肠道细菌对PEDV感染作用及其分子机制。结果显示,感染PEDV的仔猪肠道微生物群落多样性显著低于健康组,而且细菌群落特征也不同。在变化的肠道细菌中,PEDV感染组A型产气荚膜梭菌的相对丰度显著增加。在健康仔猪肠道中成功分离出一株A型产气荚膜梭菌,将其命名为DQ21。猪A型产气荚膜梭菌DQ21菌株的代谢产物在猪肠上皮细胞克隆J2(IPEC-J2)细胞中显著增强PEDV的复制,同时能显著增强PEDV对哺乳仔猪的感染和致病性。利用代谢组学技术在猪A型产气荚膜梭菌DQ21代谢产物中鉴定的棕榈酸(palmitic acid,PA)在IPEC-J2细胞能显著增强PEDV复制,同时能显著增强PEDV对哺乳仔猪的感染和致病性。PA还能提高小鼠免疫血清中的中和抗体滴度。进一步发现,PA可以介导PEDV S蛋白的棕榈酰化修饰,通过增强病毒的稳定性和膜融合从而促进病毒感染。我们研究揭示,PEDV在与宿主相互作用过程中进化出一种利用肠道菌群代谢产物增强自身感染的致病模式:PEDV感染引起仔猪肠道中猪A型产气荚膜梭菌丰度上调,其代谢产物PA通过介导病毒粒子S蛋白棕榈酰化修饰增强病毒粒子稳定性和病毒膜融合,进而增强病毒感染。该研究成果为PEDV致病机制和防控提供了新的思路,为肠道冠状病毒感染提供了新的理解。


Abstract  

The host intestinal microbiota has emerged as the third element in the interactions between hosts and enteric viruses, and potentially affects the infection processes of enteric viruses.  However, the interaction of porcine enteric coronavirus with intestinal microorganisms during infection remains unclear.  In this study, we used 16S-rRNA-based Illumina NovaSeq high-throughput sequencing to identify the changes in the intestinal microbiota of piglets mediated by porcine epidemic diarrhea virus (PEDV) infection and the effects of the alterations in intestinal bacteria on PEDV infection and its molecular mechanisms.  The intestinal microbiota of PEDV-infected piglets had significantly less diversity than the healthy group and different bacterial community characteristics.  Among the altered intestinal bacteria, the relative abundance of Clostridium perfringens was significantly increased in the PEDV-infected group.  A strain of Cperfringens type A, named DQ21, was successfully isolated from the intestines of healthy piglets.  The metabolites of swine Cperfringens type A strain DQ21 significantly enhanced PEDV replication in porcine intestinal epithelial cell clone J2 (IPEC-J2) cells, and PEDV infection and pathogenicity in suckling piglets.  Palmitic acid (PA) was identified as one of those metabolites with metabolomic technology, and significantly enhanced PEDV replication in IPEC-J2 cells and PEDV infection and pathogenicity in suckling piglets.  PA also increased the neutralizing antibody titer in the immune sera of mice.  Furthermore, PA mediated the palmitoylation of the PEDV S protein, which improved virion stability and membrane fusion, thereby enhancing viral infection.  Overall, our study demonstrates a novel mechanism of PEDV infection, with implications for PEDV pathogenicity.

Keywords:  porcine epidemic diarrhea virus       Clostridium perfringens       palmitic acid       palmitoylation       infection  
Received: 21 January 2024   Online: 13 May 2024   Accepted: 07 April 2024
Fund: This research was supported by the National Natural Science Foundation of China (U23A20236) and the Key Research and Development Program, Guidance Projects of Heilongjiang Province, China (GZ20220029).
About author:  Shanshan Qi, E-mail: 2109573053@qq.com; #Correspondence Dongbo Sun, Tel: +86-459-6819008, E-mail: dongbosun@126.com

Cite this article: 

Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun. 2025. Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection. Journal of Integrative Agriculture, 24(7): 2770-2791.

Agirman G, Hsiao E Y. 2021. SnapShot: The microbiota–gut–brain axis. Cell184, 2524.

Baldridge M T, Nice T J, McCune B T, Yokoyama C C, Kambal A, Wheadon M, Diamond M S, Ivanova Y, Artyomov M, Virgin H W. 2015. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science347, 266–269.

Basic M, Keubler L M, Buettner M, Achard M, Breves G, Schröder B, Smoczek A, Jörns A, Wedekind D, Zschemisch N H, Günther C, Neumann D, Lienenklaus S, Weiss S, Hornef M W, Mähler M, Bleich A. 2014. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflammatory Bowel Diseases20, 431–443.

Baums C G, Schotte U, Amtsberg G, Goethe R. 2004. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Veterinary Microbiology100, 11–16.

Benton H P, Ivanisevic J, Mahieu N G, Kurczy M E, Johnson C H, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi B K, Tautenhahn R, Gieschen A, Fields M W, Patti G J, Siuzdak G. 2015. Autonomous metabolomics for rapid metabolite identification in global profiling. Analytical Chemistry87, 884–891.

Berger A K, Yi H, Kearns D B, Mainou B A. 2017. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathogens13, e1006768.

BIG Data Center Members. 2019. Database resources of the BIG Data Center in 2019. Nucleic Acids Research47, D8–D14.

Borgdorff H, Gautam R, Armstrong S D, Xia D, Ndayisaba G F, van Teijlingen N H, Geijtenbeek T B, Wastling J M, van de Wijgert J H. 2016. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunology9, 621–633.

Brian D A, Baric R S. 2005. Coronavirus genome structure and replication. Current Topics in Microbiology and Immunology287, 1–30.

Brigidi G S, Bamji S X. 2013. Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). Journal of Visualized Experiments18, 50031.

Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J, Holmes S P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

David S C, Norton T, Tyllis T, Wilson J J, Singleton E V, Laan Z, Davies J, Hirst T R, Comerford I, McColl S R, Paton J C, Alsharifi M. 2019. Direct interaction of whole-inactivated influenza A and pneumococcal vaccines enhances influenza-specific immunity. Nature Microbiology4, 1316–1327.

Erickson A K, Jesudhasan P R, Mayer M J, Narbad A, Winter S E, Pfeiffer J K. 2018. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host & Microbe23, 77–88.e5.

Gelhaus S, Thaa B, Eschke K, Veit M, Schwegmann-Weßels C. 2014. Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction. Virology464–465, 397–405.

Hartenian E, Nandakumar D, Lari A, Ly M, Tucker J M, Glaunsinger B A. 2020. The molecular virology of coronaviruses. The Journal of Biological Chemistry295, 12910–12934.

Hofmann A F, Hagey L R. 2014. Key discoveries in bile acid chemistry and biology and their clinical applications: History of the last eight decades. Journal of Lipid Research55, 1553–1595.

Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biology4, e337.

Hou X L, Yu L Y, Liu J. 2007. Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies. Veterinary Microbiology123, 86–92.

Huang J H, Huang X H, Cheng Z Y, Zheng Q S, Sun R Y. 2004. Dose conversion among different animals and healthy volunteers in pharmacological study. Chinese Journal of Clinical Pharmacology and Therapeutics9, 1069–1072. (in Chinese)

Jiang H C, Dong H L, Zhang G X, Yu B S, Chapman L R, Fields M W. 2006. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Applied and Environmental Microbiology72, 3832–3845.

Kechin A, Boyarskikh U, Kel A, Filipenko M. 2017. cutPrimers: A new tool for accurate cutting of primers from reads of targeted next generation sequencing. Journal of Computational Biology24, 1138–1143.

Kordyukova L V, Serebryakova M V, Khrustalev V V, Veit M. 2019. Differential S-Acylation of enveloped viruses. Protein and Peptide Letters26, 588–600.

Lee D, Jang G, Min KC, Lee IH, Won H, Yoon I J, Kang S C, Lee C. 2023. Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs. Archives of Virology168, 166.

Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, Weiss M, Li G, Yang X, Jiang X, Yuan L. 2016. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Scientific Reports6, 25017.

Lemonidis K, Werno M W, Greaves J, Diez-Ardanuy C, Sanchez-Perez M C, Salaun C, Thomson D M, Chamberlain L H. 2015. The zDHHC family of S-acyltransferases. Biochemical Society Transactions43, 217–221.

Li C, Su M, Yin B, Guo D, Wei S, Kong F, Feng L, Wu R, Sun D. 2019. Integrin αvβ3 enhances replication of porcine epidemic diarrhea virus on Vero E6 and porcine intestinal epithelial cells. Veterinary Microbiology237, 108400.

Li Z, Zhang W, Su L, Huang Z, Zhang W, Ma L, Sun J, Guo J, Wen F, Mei K, El-Ashram S, Huang S, Zhao Y. 2022. Difference analysis of intestinal microbiota and metabolites in piglets of different breeds exposed to porcine epidemic diarrhea virus infection. Frontiers in Microbiology13, 990642.

Limsuwat N, Boonarkart C, Phakaratsakul S, Suptawiwat O, Auewarakul P. 2020. Influence of cellular lipid content on influenza A virus replication. Archives of Virology165, 1151–1161.

Liu H, Yin X, Tian H, Qiu Y, Wang Z, Chen J, Ma D, Zhao B, Du Q, Tong D, Huang Y. 2022. The S protein of a novel recombinant PEDV strain promotes the infectivity and pathogenicity of PEDV in mid-west China. Transboundary and Emerging Diseases69, 3704–3723.

Liu S, Zhao L, Zhai Z, Zhao W, Ding J, Dai R, Sun T, Meng H. 2015. Porcine epidemic diarrhea virus infection induced the unbalance of gut microbiota in piglets. Current Microbiology71, 643–649.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25, 402–408.

Ma X, Wang Q, Li H, Xu C, Cui N, Zhao X. 2017. 16S rRNA genes Illumina sequencing revealed differential cecal microbiome in specific pathogen free chickens infected with different subgroup of avian leukosis viruses. Veterinary Microbiology, 207, 195–204.

Mehdizadeh Gohari I, A Navarro M, Li J, Shrestha A, Uzal F, A McClane B. 2021. Pathogenicity and virulence of Clostridium perfringensVirulence12, 723–753.

Mertens N, Theuß T, Köchling M, Dohmann K, Lillie-Jaschniski K. 2022. Pathogens detected in 205 German farms with porcine neonatal diarrhea in 2017. Veterinary Sciences9, 44.

Monedero V, Collado M C, Rodríguez-Díaz J. 2018. Therapeutic opportunities in intestinal microbiota-virus interactions. Trends in Biotechnology36, 645–648.

Nguyen H T, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes J C, Sodroski J. 2021. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. Journal of Virology95, e02304–20.

Niederwerder M C. 2017. Role of the microbiome in swine respiratory disease. Veterinary Microbiology209, 97–106.

Ramadan A A, Mayilsamy K, McGill A R, Ghosh A, Giulianotti M A, Donow H M, Mohapatra S S, Mohapatra S, Chandran B, Deschenes R J, Roy A. 2022. Identification of SARS-CoV-2 spike palmitoylation inhibitors that results in release of attenuated virus with reduced infectivity. Viruses14, 531.

Reed L J. 1938. A simple method of estimating fifty percent end points. American Journal of Hygiene27, 493–497.

Sanders D W, Jumper C C, Ackerman P J, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares A H, Saeed M, Holehouse A S, Ploss A, Levental I, Douam F, Padera R F, Levy B D, Brangwynne C P. 2021. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife10, e65962.

Song D, Peng Q, Chen Y, Zhou X, Zhang F, Li A, Huang D, Wu Q, Ye Y, He H, Wang L, Tang Y. 2017. Altered gut microbiota profiles in sows and neonatal piglets associated with porcine epidemic diarrhea virus infection. Scientific Reports7, 17439.

Sun R Q, Cai R J, Chen Y Q, Liang P S, Chen D K, Song C X. 2012. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerging Infectious Diseases18, 161–163.

Tabaczar S, Czogalla A, Podkalicka J, Biernatowska A, Sikorski A F. 2017. Protein palmitoylation: Palmitoyltransferases and their specificity. Experimental Biology and Medicine (Maywood, N.J.), 242, 1150–1157.

Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. 2019a. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS ONE14, e0219868.

Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. 2019b. Porcine epidemic diarrhea altered colonic microbiota communities in suckling piglets. Genes11, 44.

Thorp E B, Boscarino J A, Logan H L, Goletz J T, Gallagher T M. 2006. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity. Journal of Virology80, 1280–1289.

Tilg H, Adolph T E, Trauner M. 2022. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metabolism34, 1700–1718.

Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature489, 242–249.

Veit M. 2012. Palmitoylation of virus proteins. Biology of the Cell104, 493–515.

Wang H, Hui P, Uemoto Y, Ding Y, Yin Z, Bao W. 2023. Metabolomic and proteomic profiling of porcine intestinal epithelial cells infected with porcine epidemic diarrhea virus. International Journal of Molecular Sciences, 24, 5071.

Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, Tang B, Dong L, Ding N, Zhang Q, Bai Z, Dong X, Chen H, Sun M, Zhai S, Sun Y, Yu L, Lan L, Xiao J, Fang X, et al. 2017. GSA: genome sequence archive. GenomicsProteomics & Bioinformatics15, 14–18.

Wypych T P, Wickramasinghe L C, Marsland B J. 2019. The influence of the microbiome on respiratory health. Nature Immunology20, 1279–1290.

Yang D, Su M, Li C, Zhang B, Qi S, Sun D, Yin B. 2020. Isolation and characterization of a variant subgroup GII-a porcine epidemic diarrhea virus strain in China. Microbial Pathogenesis140, 103922.

Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. 2021. Intestinal microbiota-a promising target for antiviral therapy? Frontiers in Immunology12, 676232.

Yu Y, Li C, Liu J, Zhu F, Wei S, Huang Y, Huang X, Qin Q. 2020. Palmitic acid promotes virus replication in fish cell by modulating autophagy flux and TBK1-IRF3/7 pathway. Frontiers in Immunology11, 1764.

Zhang H, Zou C, Peng O, Ashraf U, Xu Q, Gong L, Fan B, Zhang Y, Xu Z, Xue C, Wei X, Zhou Q, Tian X, Shen H, Li B, Zhang X, Cao Y. 2023. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission. Molecular Biology and Evolution40, msad052.

Zhang N, Zhao H, Zhang L. 2019. Fatty acid synthase promotes the palmitoylation of chikungunya virus nsP1. Journal of Virology93, e01747–18.

Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, Zhao J, Meng H. 2015. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE10, e0117441.

[1] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[2] Meagan J. STOTTS, Yangzi ZHANG, Shuwen ZHANG, Jennifer J. MICHAL, Juan VELEZ, Bothe HANS, Martin MAQUIVAR, Zhihua JIANG.

Alternative polyadenylation events in epithelial cells sense endometritis progression in dairy cows [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1820-1832.

[3] ZHANG Yu, LUO Shu-wen, HOU Li-e, GU Tian-tian, ZHU Guo-qiang, Wanwipa VONGSANGNAK, XU Qi, CHEN Guo-hong. Weighted gene co-expression network analysis identifies potential regulators in response to Salmonella Enteritidis challenge in the reproductive tract of laying ducks[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2384-2398.
[4] LI Chao-hui, FAN Zhi-li, HUANG Xin-yi, WANG Qin-hu, JIANG Cong, XU Jin-rong, JIN Qiao-jun. Mutations in FgPrp6 suppressive to the Fgprp4 mutant in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1375-1388.
[5] JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, FENG Xiao-ning, HU Wei, ZHANG Xian-feng, ZHAO Dong-ming, BU Zhi-gao, HE Xi-jun. Viricidal activity of several disinfectants against African swine fever virus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3084-3088.
[6] YE Wen-wu, ZENG Dan-dan, XU Miao, YANG Jin, MA Jia-xin, WANG Yuan-chao, ZHENG Xiao-bo. A LAMP-assay-based specific microbiota analysis reveals community dynamics and potential interactions of 13 major soybean root pathogens[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2056-2063.
[7] CHEN Meng-yao, YE Wan-yi, XIAO Hua-mei, LI Mei-zhen, CAO Zheng-hong, YE Xin-hai, ZHAO Xian-xin, HE Kang, LI Fei. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2814-2822.
[8] XU Jing-sheng, DENG Yu-qing, CHENG Guang-yuan, ZHAI Yu-shan, PENG Lei, DONG Meng, XU Qian, YANG Yong-qing. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2294-2301.
[9] LI You-quan, GUO Peng-fei, LIU Jun-long, LIU Zhi-jie, HAN Yuan, LI Xuan, LIU Ai-hong, GUAN Gui-quan, LIU Guang-yuan, LUO Jian-xun, YIN Hong . Experimental infectivity of Theileria luwenshuni and Theileria uilenbergi in Chinese Kunming mice[J]. >Journal of Integrative Agriculture, 2018, 17(2): 488-492.
[10] QI Chen-hui, ZHAO Xian-yan, JIANG Han, LIU Hai-tao, WANG Yong-xu, HU Da-gang, HAO Yu-jin. Molecular cloning and functional identification of an apple flagellin receptor MdFLS2 gene[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2694-2703.
[11] HAN Yi-juan, ZHONG Zhen-hui, SONG Lin-lin, Olsson Stefan, WANG Zong-hua, LU Guo-dong. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1252-1267.
[12] Yen-Con Hung, Brian W. Waters, Veerachandra K. Yemmireddy, Ching-Hua Huang. pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2914-2923.
[13] LIANG Qiao-lan, WEI Lie-xin, XU Bing-liang, A. Calderón-Urrea, XIANG Dong. Study of viruses co-infecting white clover (Trifolium repens) in China[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1990-1998.
[14] GAO Shi-gang, NI Xuan, LI Ying-ying, FU Ke-he, YU Chuan-jin, GAO Jin-xin, WANG Meng, LI Ya-qian, CHEN Jie . Sod gene of Curvularia lunata is associated with the virulence in maize leaf[J]. >Journal of Integrative Agriculture, 2017, 16(04): 874-883.
[15] ZHANG Dong-feng, ZHANG Nan, ZHONG Tao, WANG Chao, XU Ming-liang, YE Jian-rong. Identification and characterization of the GH3 gene family in maize[J]. >Journal of Integrative Agriculture, 2016, 15(2): 249-261.
No Suggested Reading articles found!