Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2749-2769    DOI: 10.1016/j.jia.2024.12.017
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
GBiDC-PEST: A novel lightweight model for real-time multiclass tiny pest detection and mobile platform deployment

Weiyue Xu1, 2, Ruxue Yang1, Raghupathy Karthikeyan3, Yinhao Shi1, Qiong Su3#

1 Changzhou University, Changzhou 213164, China

2 Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, United States

3 Department of Agricultural Sciences, Clemson University, Clemson, South Carolina 29634, United States

 Highlights 
A real-time detection algorithm GBiDC-PEST for four tiny pests on mobile devices was developed.
The backbone of YOLO series was reconstructed.
Model size was reduced by 80% while maintaining accuracy (>80%) in GBiDC-PEST.
The proposed model offers a smaller size (2.8 MB) than the YOLO series (v5–v10).
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

基于深度学习的智能识别算法可解决劳动密集型人工害虫检测问题,但其移动设备上的部署通常受限于高计算需求。本文开发了基于GBiDC-PEST改进轻量级检测算法的移动应用程序,其结合了You Only Look Once YOLO)系列单阶段架构用于实时检测四种微小害虫(小麦螨,甘蔗蚜虫,小麦蚜虫和水稻飞虱)。改进的GBiDC-PEST模型包括GhostNet(用于轻量级特征提取和主干架构优化),双向特征金字塔网络(BiFPN,用于增强多尺度特征融合),DWConv层(用于减少计算负荷的深度卷积),以及卷积注意力模块(CBAM,用于精确特征聚焦)。GBiDC-PEST使用覆盖多种田间环境的多靶点农业微小害虫数据集(Tpest-3960)进行训练和验证,结果显示:(1)模型尺寸被显著减小(2.8 MB,为原始模型的20%),小于YOLO系列(v5 ~ v10);(2)检测精度高于YOLOv10nv10s;(3)检测速度优于v8sv9cv10mv10b;(4)复杂背景下的害虫检测性能获得提高,对小麦螨和水稻飞虱的检测准确率比原始模型增加了4.5-7.5%Android部署实验)。本研究提出的GBiDC-PEST模型及其移动端部署工作为大田现场的快速识别、定位微小害虫提供了强大技术支撑,为在各种农业环境中有效监测、计数和控制有害生物提供了有价值的参考。



Abstract  

Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection. However, their deployment on mobile devices has been constrained by high computational demands. Here, we developed GBiDC-PEST, a mobile application that incorporates an improved, lightweight detection algorithm based on the you only look once (YOLO) series single-stage architecture, for real-time detection of four tiny pests (wheat mites, sugarcane aphids, wheat aphids, and rice planthoppers). GBiDC-PEST incorporates several innovative modules, including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone, the Bi-directional Feature Pyramid Network (BiFPN) for enhanced multiscale feature fusion, Depthwise convolution (DWConv) layers to reduce computational load, and the Convolutional Block Attention Module (CBAM) to enable precise feature focus. The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset (Tpest-3960) that covered various field environments. GBiDC-PEST (2.8 MB) significantly reduced the model size to only 20% of the original model size, offering a smaller size than the YOLO series (v5 ~ v10), higher detection accuracy than YOLOv10n and v10s, and faster detection speed than v8s, v9c, v10m and v10b. In Android deployment experiments, GBiDC-PEST demonstrated enhanced performance in detecting pests against complex backgrounds, and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5% compared with the original model. The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid, onsite identification and localization of tiny pests. This advancement provides valuable insights for effective pest monitoring, counting, and control in various agricultural settings.

Keywords:  mobile counting       real-time processing       pest detection       tiny object identification       algorithm deployment  
Received: 19 July 2024   Online: 16 December 2024   Accepted: 24 October 2024
Fund: 

Weiyue Xu acknowledges the support of the Natural Science Foundation of Jiangsu Province, China (BK20240977), the China Scholarship Council (201606850024), the National High Technology Research and Development Program of China (2016YFD0701003), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (SJCX23_1488). 

About author:  Weiyue Xu, Mobile: +86-15051971896, E-mail: wyxu@cczu.edu.cn; #Correspondence Qiong Su, Tel: +1-979-4224883, E-mail: qsu@clemson.edu

Cite this article: 

Weiyue Xu, Ruxue Yang, Raghupathy Karthikeyan, Yinhao Shi, Qiong Su. 2025. GBiDC-PEST: A novel lightweight model for real-time multiclass tiny pest detection and mobile platform deployment. Journal of Integrative Agriculture, 24(7): 2749-2769.

Asrol M, Utama D N, Adeta F. 2023. Real-time oil palm fruit grading system using smartphone and modified YOLOv4. IEEE Access11, 59758–59773.

Bebber D P, Ramotowski M A, Gurr S J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change3, 985–988.

Benjumea A, Teeti I, Cuzzolin F, Bradley A. 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. Arxiv, https://doi.org/10.48550/arXiv.2112.11798.

Bowling R D, Brewer M J, Kerns D L, Gordy J, Seiter N, Elliott N E, Buntin G D, Way M, Royer T, Biles S. 2016. Sugarcane aphid (Hemiptera: Aphididae): A new pest on sorghum in North America. Journal of Integrated Pest Management7, 1–13.

Cai J, Xiao D, Lv L, Ye Y. 2019. An early warning model for vegetable pests based on multidimensional data. Computers and Electronics in Agriculture156, 217–226.

Cai Z, Vasconcelos N.2018. Cascade R-CNN: Delving into high quality object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition9, 6154–6162.

Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav A L, Rani L. 2024. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. Journal of Environmental Management354, 120326.

Chen M, Chen Z, Luo L, Tang Y, Cheng J, Wei H, Wang J. 2024. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard. Computers and Electronics in Agriculture219, 108774.

Chollet F.2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition3, 1503–2251.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv, https://doi.org/10.48550/arXiv.2010.11929

Fahad L G, Tahir S F, Rasheed U, Saqib H, Hassan M, Alquhayz H. 2022. Fruits and vegetables freshness categorization using deep learning. CMC-Computers Materials & Continua71, 5083–5098.

Genaev M A, Komyshev E G, Shishkina O D, Adonyeva N V, Karpova E K, Gruntenko N E, Zakharenko L P, Koval V S, Afonnikov D A. 2022. Classification of fruit flies by gender in images using smartphones and the YOLOv4-tiny neural network. Mathematics10, 295–313.

Hajjar M J, Ahmed N, Alhudaib K A, Ullah H. 2023. Integrated insect pest management techniques for rice. Sustainability15, 4499.

Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C.2020. Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition3, 1577–1586.

He K, Zhang X, Ren S, Sun J.2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2, 770–778.

Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. ArXiv, https://doi.org/10.48550/arXiv.1704.04861

Hu Y, Wang Q, Wang C, Qian Y, Xue Y, Wang H. 2024. MACNet: A more accurate and convenient pest detection network. Electronics13, 1068.

Javaid M, Haleem A, Singh R P, Suman R. 2022. Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks3, 150–164.

Jiao L, Xie C, Chen P, Du J, Li R, Zhang J. 2022. Adaptive feature fusion pyramid network for multi-classes agricultural pest detection. Computers and Electronics in Agriculture195, 106827–106835.

Karar M E, Alsunaydi F, Albusaymi S, Alotaibi S. 2021. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal60, 4423–4432.

Kumar G S, Shetty S D.2021. Application development for mask detection and social distancing violation detection using convolutional neural networks. Proceedings of the 23rd International Conference on Enterprise Information Systems1, 760–767.

Leybourne D J, Storer K E, Marshall A, Musa N, Telling S, Abel L, White S, Ellis S, Yang P, Berry P M. 2024. Thresholds and prediction models to support the sustainable management of herbivorous insects in wheat. A review. Agronomy for Sustainable Development44, 29.

Li H, Gu Z, He D, Wang X, Huang J, Mo Y, Li P, Huang Z, Wu F. 2024. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Computers and Electronics in Agriculture220, 108914.

Li R, Wang R, Xie C, Liu L, Zhang J, Wang F, Liu W. 2019. A coarse-to-fine network for aphid recognition and detection in the field. Biosystems Engineering187, 39–52.

Li W, Wang D, Li M, Gao Y, Wu J, Yang X. 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture183, 106048–106058.

Ma N, Zhang X, Zheng H-T, Sun J.2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. Proceedings of the European Conference on Computer Vision (ECCV)11218, 116–131.

Mendes P A, Coimbra A P, De Almeida A T. 2023. Forest vegetation detection using deep learning object detection models. Forests14, 1787–1808.

Ong S Q, Ahmad H, Majid A H A. 2021. Development of a deep learning model from breeding substrate images: A novel method for estimating the abundance of house fly (Musca domestica L.) larvae. Pest Management Science77, 5347–5355.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L. 2019. Pytorch: An imperative style, high-performance deep learning library. Proceedings of the Conference on Neural Information Processing Systems32, 7994–8005.

Rahaman M, Chowdhury M, Rahman M A, Ahmed H, Hossain M, Rahman M H, Biswas M, Kader M, Noyan T A, Biswas M. 2023. A deep learning based smartphone application for detecting mango diseases and pesticide suggestions. International Journal of Computing and Digital Systems13, 1273–1286.

Redmon J, Divvala S, Girshick R, Farhadi A.2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition183, 779–788.

Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence39, 1137–1149.

Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2019. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision128, 336–359.

Tan M, Pang R, Le Q V.2020. Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition16, 10781–10790.

Tang Y, Chen C, Leite A C, Xiong Y. 2023. Editorial: Precision control technology and application in agricultural pest and disease control. Frontiers in Plant Science14, 1163839.

Tang Y, Qi S, Zhu L, Zhuo X, Zhang Y, Meng F. 2024. Obstacle avoidance motion in mobile robotics. Journal of System Simulation36, 1–26.

Tarek H, Aly H, Eisa S, Abul-Soud M. 2022. Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment. Electronics11, 140–158.

Wang R, Liu L, Xie C, Yang P, Li R, Zhou M. 2021. AgriPest: A large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild. Sensors21, 1601–1615.

Wang Z, Jin L, Wang S, Xu H. 2022. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biology and Technology185, 111808–111818.

Wei M, Zhan W. 2024. YOLO_MRC: A fast and lightweight model for real-time detection and individual counting of Tephritidae pests. Ecological Informatics79, 102445.

Woo S, Park J, Lee J-Y, Kweon I S.2018. CBAM: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), 1, 3–19.

Xu W, Xu T, Alex Thomasson J, Chen W, Karthikeyan R, Tian G, Shi Y, Ji C, Su Q. 2023a. A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments. Computers and Electronics in Agriculture211, 107961–107976.

Xu W, Yu X, Xue X. 2023b. A binary gridding path-planning method for plant-protecting UAVs on irregular fields. Journal of Integrative Agriculture22, 2796–2809.

Xu X, Shi J, Chen Y, He Q, Liu L, Sun T, Ding R, Lu Y, Xue C, Qiao H. 2023. Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level. Frontiers in Plant Science14, 1200901.

Yu C, Feng J, Zheng Z, Guo J, Hu Y. 2024. A lightweight SOD-YOLOv5n model-based winter jujube detection and counting method deployed on Android. Computers and Electronics in Agriculture218, 108701.

Yu L, Zhu J, Zhao Q, Wang Z. 2022. An efficient YOLO algorithm with an attention mechanism for vision-based defect inspection deployed on FPGA. Micromachines13, 1058–1073.

Yue X, Li H, Shimizu M, Kawamura S, Meng L. 2022. YOLO-GD: A deep learning-based object detection algorithm for empty-dish recycling robots. Machines10, 294–313.

Zeng T, Li S, Song Q, Zhong F, Wei X. 2023. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment. Computers and Electronics in Agriculture205, 107625–107638.

Zhang J, Zhou Y, Saab R. 2023. Post-training quantization for neural networks with provable guarantees. SIAM Journal on Mathematics of Data Science5, 373–399.

Zhang X, Zhou X, Lin M, Sun J.2018. Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition10, 6848–6856.

Zhang Y, Yu J, Chen Y, Yang W, Zhang W, He Y. 2022. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application. Computers and Electronics in Agriculture192, 106586–106597.

Zhou C, Lee W S, Zhang S, Liburd O E, Pourreza A, Schueller J K, Ampatzidis Y. 2024. A smartphone application for site-specific pest management based on deep learning and spatial interpolation. Computers and Electronics in Agriculture218, 108726.

[1] Yufan Gao, Fei Yin, Chen Hong, Xiangfu Chen, Hang Deng, Yongjian Liu, Zhenyu Li, Qing Yao. Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN[J]. >Journal of Integrative Agriculture, 2025, 24(1): 220-234.
No Suggested Reading articles found!