Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1114-1124    DOI: 10.1016/j.jia.2024.05.005
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs

Xiaoqin Liu1, 2, 3, 4, Xinhao Fan1, 3, 4, Junyu Yan1, 3, 4, Longchao Zhang5, Lixian Wang5, Honor Calnan2, Yalan Yang1, 3, 4, Graham Gardner2#, Rong Zhou5#, Zhonglin Tang1, 3, 4#

1 Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China

2 College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia

3 Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

4 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

5 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
产肉性状的遗传改良一直是猪育种的主要目标。地理隔离、自然和人工选择导致中国本地猪和西方商品猪在产肉性状上存在显著差异。比较基因组和转录组为挖掘与骨骼肌生长发育相关遗传变异和基因提供了强有力工具。然而,目前可利用的遗传变异和基因的数量仍然非常有限。在本研究中,利用中外猪种的比较转录组数据发现,核糖体蛋白S27样(RPS27L)基因在猪的骨骼肌中高表达,且在中国本地猪骨骼肌中的表达水平显著高于西方商品猪。细胞功能实验结果表明,过表达RPS27L促进了猪骨骼成肌细胞的增殖并抑制其分化。相反,RPS27L的敲低则抑制了该肌细胞的增殖并促进了分化。有趣的是,在RPS27L启动子区域发现了一个13bp的插入缺失(InDel)变异,该变异序列在中国本地猪品种中呈现插入型,在西方商品猪中则主要呈现缺失型。双荧光素酶报告实验进一步表明,该InDel通过影响转录因子3(TCF3)和肌源性分化抗原(MYOD)与启动子的结合调控RPS27L的表达水平。此外,关联分析显示RPS27L的表达水平与猪背膘厚呈正相关。同时,该InDel还与猪240日龄时体重呈显著负相关。综上,本研究表明RPS27L是调节猪骨骼肌生长发育的潜在基因,并可能作为猪产肉性状改良的候选标记。本研究不仅为动物育种提供了新的分子标记,还有助于了解人类骨骼肌的发育以及相关疾病的发生。


Abstract  

Genetic improvement of meat production traits has always been the primary goal of pig breeding.  Geographical isolation, natural and artificial selection led to significant differences in the phenotypes of meat production traits between Chinese local pigs and Western commercial pigs.  Comparative genomics and transcriptomics analysis provided powerful tools to identify genetic variants and genes associated with skeletal muscle growth.  However, the number of available genetic variants and genes are still limited.  In this study, a comprehensive comparison of transcriptomes showed that ribosomal protein S27-like (RPS27L) gene was highly expressed in skeletal muscle and up-regulated in Chinese local pigs when compared with Western commercial pigs.  Functional analysis revealed that overexpression of RPS27L promoted myoblast proliferation and repressed differentiation in pig skeletal muscle cells.  Conversely, the knockdown of RPS27L led to the inhibition of myoblast proliferation and the promotion of differentiation.  Notably, a 13-bp insertion-deletion (InDel) mutation was identified within the RPS27L promoter, inserted in Chinese local breeds and predominantly deleted in Western commercial breeds.  Luciferase reporter assay suggested this InDel modulated RPS27L expression by influencing transcription factor 3 (TCF3) and myogenic differentiation antigen (MYOD) binding to the promoter.  Furthermore, a positive correlation was observed between RPS27L expression and backfat thickness.  Association studies demonstrated this InDel was significantly associated with the body weight of pigs at the age of 240 d.  Together, our results suggested that RPS27L was a regulator of skeletal muscle development and growth, and was a candidate marker for improving meat production traits in pigs.  This study not only provided a biomarker for animal breeding, but also was helpful for understanding skeletal muscle development and muscular disease in humans.

Keywords:  pig       InDel        RPS27L        skeletal muscle        growth and development  
Received: 16 November 2023   Accepted: 10 April 2024 Online: 13 May 2024  
Fund: This work was supported by the Sustainable Development Special Project from Shenzhen, China (KCXFZ2020122
1173213037), the National Natural Science Foundation of China (32172697 and U23A20229), the Guangdong Provincial Natural Science Foundation (2021A1515011336) and the Agricultural Science and Technology Innovation Program, China (CAAS-ZDRW202406).
About author:  Xiaoqin Liu, E-mail: liuxiaoqin@caas.cn; #Correspondence Zhonglin Tang, E-mail: tangzhonglin@caas.cn; Rong Zhou, E-mail: zhourong03@caas.cn; Graham Gardner, E-mail: g.gardner@murdoch.edu.au

Cite this article: 

Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. 2026. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs. Journal of Integrative Agriculture, 25(3): 1114-1124.

Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics47, 217–225.

Berger M J, Wenger A M, Guturu H, Bejerano G. 2018. Independent erosion of conserved transcription factor binding sites points to shared hindlimb, vision and external testes loss in different mammals. Nucleic Acids Research46, 9299–9308.

Cho I, Park H B, Ahn J S, Han S, Lee J B, Lim H T, Yoo C K, Jung E, Kim D H, Sun W. 2019. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genetics15, e1008279.

Fang X, Mou Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W. 2012. The sequence and analysis of a Chinese pig genome. Gigascience1, 1–11.

Feigin C Y, Newton A H, Pask A J. 2019. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Research29, 1648–1658.

Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil Let al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature491, 393–398.

Guo Y M, Lee G, Archibald A, Haley C S. 2008. Quantitative trait loci for production traits in pigs: A combined analysis of two Meishan× Large White populations. Animal Genetics39, 486–495.

Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam S M, Zhang Q. 2023. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nature Communications14, 7916.

Kojima M, Nakajima I, Arakawa A, Mikawa S, Matsumoto T, Uenishi H, Nakamura Y, Taniguchi M. 2018. Differences in gene expression profiles for subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses. PLoS ONE13, e0204135.

Kvon E Z, Kamneva O K, Melo U S, Barozzi I, Osterwalder M, Mannion B J, Tissières V, Pickle CS, Plajzer-Frick I, Lee E A. 2016. Progressive loss of function in a limb enhancer during snake evolution. Cell167, 633–642. e611.

Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature425, 832–836.

Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A. 2018. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature564, 430–433.

Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung CK, Che T, Jin L. 2017. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research27, 865–874.

Lingbeck J M, Traus-hAzar J S, Ciechanover A, Schwartz A L. 2008. In vivo interactions of MyoD, Id1, and E2A proteins determined by acceptor photobleaching fluorescence resonance energy transfer. The FASEB Journal22, 1694–1701.

Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L. 2022. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. Genetics Selection Evolution54, 62.

Lluís F, Ballestar E, Suelves M, Esteller M, Muñoz-Cánoves P. 2005. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. The EMBO Journal24, 974–984.

Londhe P, Davie J K. 2011. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skeletal Muscle1, 1–18.

Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X. 2014. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics10, e1004710.

Naval-Sanchez M, Nguyen Q, Mcwilliam S, Porto-Neto L R, Tellam R, Vuocolo T, Reverter A, Perez-Enciso M, Brauning R, Clarke S. 2018. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nature Communications9, 859.

Prather R S. 2013. Pig genomics for biomedicine. Nature Biotechnology31, 122–123.

Roscito J G, Sameith K, Parra G, Langer B E, Petzold A, Moebius C, Bickle M, Rodrigues M T, Hiller M. 2018. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nature Communications9, 4737.

Rothammer S, Kremer PV, Bernau M, Fernandez-Figares I, Pfister-Schär J, Medugorac I, Scholz A M. 2014. Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs. Genetics Selection Evolution46, 1–11.

Rudnicki M A, Schnegelsberg P N, Stead R H, Braun T, Arnold H H, Jaenisch R. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell75, 1351–1359.

Schiaffino S, Reggiani C. 1996. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiological Reviews76, 371–423.

Shapiro M D, Marks M E, Peichel C L, Blackman B K, Nereng K S, Jónsson B, Schluter D, Kingsley D M. 2004. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature428, 717–723.

Sun S, He H, Ma Y, Xu J, Chen G, Sun Y, Xiong X. 2020. Inactivation of ribosomal protein S27-like impairs DNA interstrand cross-link repair by destabilization of FANCD2 and FANCI. Cell Death and Dissease11, 852.

Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. 2007. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biology8, 1–18.

Wang L, Zhang L, Yan H, Liu X, Li N, Liang J, Pu L, Zhang Y, Shi H, Zhao K. 2014. Genome-wide association studies identify the loci for 5 exterior traits in a Large White×Minzhu pig population. PLoS ONE9, e103766.

Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell T K, Turner D, Rupp R, Hollenberg S. 1991. The myoD gene family: Nodal point during specification of the muscle cell lineage. Science251, 761–766.

Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics13, 59–69.

Xie H B, Wang L G, Fan C Y, Zhang L C, Adeola AC, Yin X, Zeng Z B, Wang L X, Zhang Y P. 2021. Genetic architecture underlying nascent speciation-The evolution of eurasian pigs under domestication. Molecular Biology and Evolution38, 3556–3566.

Xiong X, Zhao Y, He H, Sun Y. 2011. Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene30, 1798–1811.

Xiong X, Zhao Y, Tang F, Wei D, Thomas D, Wang X, Liu Y, Zheng P, Sun Y. 2014. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. eLife3, e02236.

Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C. 2018. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell173, 989–1002. e1013.

Yang Y, Sun W, Wang R, Lei C, Zhou R, Tang Z, Li K. 2015. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Molecular Biology16, 4.

Yang Y, Yan J, Fan X, Chen J, Wang Z, Liu X, Yi G, Liu Y, Niu Y, Zhang L. 2021. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genetics17, e1009910.

Yang Y, Yan L, Liang R, Rong Z, Hong A, Mu Y, Yang S, Kui L, Tang Z. 2014. Dynamic expression of microRNA-127 during porcine prenatal and postnatal skeletal muscle development. Journal of Integrative Agriculture13, 1331–1339.

Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. 2019. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Research26, 261–272.

Yao Y, Wang Z, Chen Y, Liu L, Wang L, Yi G, Yang Y, Wang D, Li K, Tang Z. 2023. Single-cell analysis reveals the lncRNA-MEG3/miRNA-133a-3p/PRRT2 axis regulates skeletal muscle regeneration and myogenesis. Genes & Diseases10, 359.

Zeng M, Wang B, Liu L, Yang Y, Tang Z. 2024. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs. Journal of Integrative Agriculture23, 217–227.

Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S. 2019. Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease. Iscience19, 162–176.

Zhao P, Yu Y, Feng W, Du H, Yu J, Kang H, Zheng X, Wang Z, Liu G, Ernst C W. 2018. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigascience7, giy058.

Zhou R, Li S, Yao W, Xie C, Chen Z, Zeng Z, Wang D, Xu K, Shen Z, Mu Y. 2021. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication. Molecular Ecology Resources21, 2077–2092.

[1] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[2] Chenyang Wang, Yinuo Zhang, Qiming Sun, Lin Li, Fang Guan, Yazhou He, Yidong Wu. Species-specific evolution of lepidopteran TspC5 tetraspanins associated with dominant resistance to Bacillus thuringiensis toxin Cry1Ac[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3127-3140.
[3] Tengteng Xu, Mengya Zhang, Qiuchen Liu, Xin Wang, Pengfei Luo, Tong Liu, Yelian Yan, Naru Zhou, Yangyang Ma, Tong Yu, Yunsheng Li, Zubing Cao, Yunhai Zhang. 18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3185-3198.
[4] Jie Zhang, Qi Wang, Jinxi Yuan, Zhen Tian, Shanchun Yan, Wei Liu.
Development of a piggyBac transgenic system in Bactrocera dorsalis and its potential for research on olfactory molecular targets
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2311-2326.
[5] Zipeng Zhang, Siyuan Xing, Ao Qiu, Ning Zhang, Wenwen Wang, Changsong Qian, Jia’nan Zhang, Chuduan Wang, Qin Zhang, Xiangdong Ding. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1930-1943.
[6] Qi Han, Xingguo Huang, Jun He, Yiming Zeng, Jie Yin, Yulong Yin. Intramuscular fat deposition in pig: A key target for improving pork quality[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4461-4483.
[7] Mianyan Li, Lei Pu, David E. MacHugh, Jingjing Tian, Xiaoqing Wang, Qingyao Zhao, Lijun Shi, Hongmei Gao, Ying Yu, Lixian Wang, Fuping Zhao. Genome-wide association studies of novel resilience traits identify important immune QTL regions and candidate genes in Duroc pigs[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4355-4369.
[8] Kaiyuan Ji, Yiwei Zhao, Xin Yuan, Chun’e Liang, Xueqing Zhang, Wenli Tian, Tong Yu, Yangyang Ma, Yinghui Ling, Yunhai Zhang. circKIF27 inhibits melanogenesis and proliferation by targeting miR-129-5p/TGIF2 pathway in goat melanocytes[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3997-4011.
[9] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[10] Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu. A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2633-2648.
[11] Jun Zhou, Qing Lin, Xueyan Feng, Duanyang Ren, Jinyan Teng, Xibo Wu, Dan Wu, Xiaoke Zhang, Xiaolong Yuan, Zanmou Chen, Jiaqi Li, Zhe Zhang, Hao Zhang.

Evaluating the performance of genomic selection on purebred population by incorporating crossbred data in pigs [J]. >Journal of Integrative Agriculture, 2024, 23(2): 639-648.

[12] Caiyun Liu, Lulu Wu, Shuyue Fan, Yongsheng Tao, Yunkui Li.

The protective effect of cyclodextrin on the color quality and stability of Cabernet Sauvignon red wine [J]. >Journal of Integrative Agriculture, 2024, 23(1): 310-323.

[13] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[14] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[15] ZHANG Jin, WANG Jie, WANG Qiao, CUI Huan-xian, DING Ji-qiang, WANG Zi-xuan, Mamadou Thiam, LI Qing-he, ZHAO Gui-ping. Immunogenetic basis of chicken’s heterophil to lymphocyte ratio revealed by genome-wide indel variants analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2810-2823.
No Suggested Reading articles found!