Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1125-1136    DOI: 10.1016/j.jia.2024.04.020
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway

Yajie Gao1, 2*, Song Wang1, 3*, Anqi Di1, Chao Hai1, Di Wu1, Zhenting Hao1, Lige Bu1, Xuefei Liu1, Chunling Bai1, Guanghua Su1, Lishuang Song1, Zhuying Wei1, Zhonghua Liu3, Lei Yang1#, Guangpeng Li1#

1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China

2 The Central Lab, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China

3  College of Life Science, Northeast Agricultural University, Harbin 150030, China

 Highlights 
Ca2+ content in muscle tissues and muscle satellite cells of MSTN mutated cattle was detected.
Ca2+ signaling pathway was used to explain the phenomenon that MSTN mutation activates cell proliferation and induces animal muscle overgrowth.
The molecular mechanism by which MSTN mutation activates the TRPC4/Ca2+/calcineurin/NFATc3 pathway to promote muscle development was revealed.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
肌生成抑制素(myostatinMSTN)主要在骨骼肌中表达,MSTN基因的缺失会促进肌细胞增殖。Ca2+是生物体中广泛存在的第二信使,对于肌细胞的增殖和肌肉生长至关重要。然而,MSTN基因与Ca2+之间的联系目前仍不清楚。因此,本研究以MSTN基因编辑牛(MSTN-/-)作为研究对象,从Ca2+通道及其调控途径角度探讨MSTN突变促进肌卫星细胞增殖的分子机制。与野生型(WT)相比,MSTN突变促进牛肌卫星细胞增殖。通过电感耦合等离子体—质谱法(Inductively coupled plasma-Mass SpectrometryICP-MS)发现,MSTN-/-牛的肌肉组织和肌卫星细胞中Ca2+含量显著升高。同时,转录组测序发现MSTN-/-牛的TRPC4表达水平显著增加。这些结果表明,MSTN突变激活Ca2+通道TRPC4促进细胞增殖。通过使用TRPC4的特异性抑制剂ML204处理MSTN-/-肌卫星细胞,发现Ca2+含量显著降低至WT水平。CalreticulinWestern blot和特异性染色发现,ML204处理后MSTN-/-肌卫星细胞中Calcineutrin的表达量和NFATc3入核量显著降低,细胞增殖能力受到抑制综上所述,MSTN突变激活钙离子通道TRPC4,引起胞质内Ca2+含量升高,激活Calcineurin活性,致使NFATc3去磷酸化入核,激活增殖相关基因从而促进肌卫星细胞增殖,使MSTN-/-牛出现“双肌”表型。本研究揭示了MSTN突变激活TRPC4/Ca2+/Calcineurin/NFATc3通路促进肌肉发育的分子机制,为进一步探究MSTN对牛肌肉发育的调控机制提供参考。


Abstract  

Myostatin (MSTN) is principally expressed in skeletal muscle and negatively regulates muscle growth and development.  MSTN mutation can induce muscle overgrowth in cattle by activating cell proliferation, presenting a “double-muscle” phenotype.  However, the specific regulatory mechanism is still unclear.  Here, we found that Ca2+ content in muscle tissue and muscle satellite cells of MSTN mutated (MSTN–/–) cattle were significantly increased compared to wild-type (WT).  Furthermore, transcriptome analysis of muscle satellite cells revealed that TRPC4 was significantly increased in MSTN–/– cattle.  And the expression of TRPC4 in muscle tissue of MSTN–/– cattle was detected by RT-qPCR and Western blot, which was significantly higher than that of WT.  These results suggested that MSTN mutation promoted muscle satellite cells proliferation through activation of TRPC4 channel.  To further verify, ML204, a specific inhibitor of TRPC4, was used to treat MSTN–/– muscle satellite cells.  We found that cell proliferation was inhibited, calcineurin expression was downregulated, and the entry of NFATc3 into nuclei was reduced, which was similar to WT group.  Thus, MSTN mutation leads to the activation of TRPC4 channel, which increases intracellular Ca2+ content, further activates calcineurin/NFATc3 pathway, and ultimately promotes the proliferation of muscle satellite cells.

Keywords:  myostatin       cell proliferation        Ca2+        TRPC4        NFATc3  
Received: 31 October 2023   Accepted: 13 March 2024 Online: 16 May 2024  
Fund: 
This study was supported by the National Natural Science Foundation of China (32360837 and 32341052), the STI2030 Major Projects, China (2023ZW0404803), the Inner Mongolia Open Competition Projects, China (2022JBGS0025), the Inner Mongolia Science and Technology Leading Team, China (2022LJRC0006), the Inner Mongolia Science and Technology Major Projects, China (2021ZD0009, 2021ZD0008, 2022ZD0008, 2023KJHZ0028), the Inner Mongolia Young Talents Projects, China (NJYT23138), the Inner Mongolia Natural Science Foundation, China (2023MS03004), the Central Government Guides Development, China (2022ZY0212), the National Agricultural Science and Technology Project of China (NK2022130203), the Collaborative Innovation among Universities in Hohhot, China (XTCX2023-06), and the Ministry of Education Engineering Centre Project, China (JYBGCSYS2022).
About author:  Yajie Gao, E-mail: gaoyajie1997@163.com; Song Wang, E-mail: wangsong199852@163.com; #Correspondence Lei Yang, Tel: +86-471-5298583, E-mail: leiyang@imu.edu.cn; Guangpeng Li, Tel: +86-471-5298583, E-mail: gpengli@imu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yajie Gao, Song Wang, Anqi Di, Chao Hai, Di Wu, Zhenting Hao, Lige Bu, Xuefei Liu, Chunling Bai, Guanghua Su, Lishuang Song, Zhuying Wei, Zhonghua Liu, Lei Yang, Guangpeng Li. 2026. Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway. Journal of Integrative Agriculture, 25(3): 1125-1136.

Abramowitz J, Birnbaumer L. 2009. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB Journal23, 297–328.

Allen D G. 2019. Calcium sensitivity and muscle disease. The Journal of Physiology597, 4435–4436.

Backs J, Song K, Bezprozvannaya S, Chang S, Olson E N. 2006. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. Journal of Clinical Investigation116, 1853–1864.

Bodnár D, Geyer N, Ruzsnavszky O, Oláh T, Hegyi B, Sztretye M, Fodor J, Dienes B, Balogh Á, Papp Z, Szabó L, Müller G, Csernoch L, Szentesi P. 2014. Hypermuscular mice with mutation in the myostatin gene display altered calcium signalling. The Journal of Physiology592, 1353–1365.

Boman I A, Våge D I. 2009. An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spaelsau (Ovis aries). BMC Research Notes2, 98.

Buchholz M, Ellenrieder V. 2007. An emerging role for Ca2+/calcineurin/NFAT signaling in cancerogenesis. Cell Cycle6, 16–19.

Chen M M, Zhao Y P, Zhao Y, Deng S L, Yu K. 2021. Regulation of myostatin on the growth and development of skeletal muscle. Frontiers in Cell and Developmental Biology9, 785712.

Chen Y, Yuan J, Jiang G, Zhu J, Zou Y, Lv Q. 2017. Lercanidipine attenuates angiotensin II-induced cardiomyocyte hypertrophy by blocking calcineurin-NFAT3 and CaMKII-HDAC4 signaling. Molecular Medicine Reports16, 4545–4552.

Cooley N, Grubb D R, Luo J, Woodcock E A. 2014. The phosphatidy-linositol(4,5)bisphosphate-binding sequence of transient receptor potential channel canonical 4α is critical for its contribution to cardiomyocyte hypertrophy. Molecular Pharmacology86, 399–405.

Eder P, Molkentin J D. 2011. TRPC channels as effectors of cardiac hypertrophy. Circulation Research108, 265–272.

Elliott B, Renshaw D, Getting S, Mackenzie R. 2012. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiologica (Oxford, England), 205, 324–340.

Farfariello V, Gordienko D V, Mesilmany L, Touil Y, Germain E, Fliniaux I, Desruelles E, Gkika D, Roudbaraki M, Shapovalov G, Noyer L, Lebas M, Allart L, Zienthal-Gelus N, Iamshanova O, Bonardi F, Figeac M, Laine W, Kluza J, Marchetti P, et al. 2022. TRPC3 shapes the ER-mitochondria Ca2+ transfer characterizing tumour-promoting senescence. Nature Communications13, 956.

Figeac N, Daczewska M, Marcelle C, Jagla K. 2007. Muscle stem cells and model systems for their investigation. Developmental Dynamic (An official publication of the American Association of Anatomists), 236, 3332–3342.

Fu C, Donadio N, Cardenas M E, Heitman J. 2018. Dissecting the roles of the calcineurin pathway in unisexual reproduction, stress responses, and virulence in Cryptococcus deneoformansGenetics208, 639–653.

Gao H, Wang F, Wang W, Makarewich C A, Zhang H, Kubo H, Berretta R M, Barr L A, Molkentin J D, Houser S R. 2012. Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activates pathological hypertrophy signaling. Journal of Molecular and Cellular Cardiology53, 657–667.

Ge L, Dong X, Gong X, Kang J, Zhang Y, Quan F. 2020. Mutation in myostatin 3´UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. International Journal of Biological Macromolecules154, 634–643.

Girgenrath S, Song K, Whittemore L A. 2005. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle & Nerve31, 34–40.

Graef I A, Chen F, Crabtree G R. 2001. NFAT signaling in vertebrate development. Current Opinion in Genetics & Development11, 505–512.

Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan P G, Rao A. 2006. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature441, 646–650.

Han J, Tian H, Liu Y, Fan F. 2019. Sarpogrelate attenuates pulmonary arterial hypertension via calcium/calcineurin axis. Frontiers in Bioscience (Landmark edition), 24, 607–615.

Han S Z, Gao K, Chang S Y, Choe H M, Paek H J, Quan B H, Liu X Y, Yang L H, Lv S T, Yin X J, Quan L H, Kang J D. 2022. miR-455-3p is negatively regulated by myostatin in skeletal muscle and promotes myoblast differentiation. Journal of Agricultural and Food Chemistry70, 10121–10133.

Hardingham G E, Chawla S, Johnson C M, Bading H. 1997. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature385, 260–265.

Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A, Kiyoshima T. 2021. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. The Journal of Pathology253, 80–93.

Hendrikx S, Coso S, Prat-Luri B, Wetterwald L, Sabine A, Franco C A, Nassiri S, Zangger N, Gerhardt H, Delorenzi M, Petrova T V. 2019. Endothelial calcineurin signaling restrains metastatic outgrowth by regulating Bmp2. Cell Reports26, 1227–1241.e6.

Hennebry A, Berry C, Siriett V, O’callaghan P, Chau L, Watson T, Sharma M, Kambadur R. 2009. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. American Journal of Physiology Cell Physiology296, C525–C534.

Hoey T, Sun Y L, Williamson K, Xu X. 1995. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity2, 461–472.

Hofmann T, Schaefer M, Schultz G, Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences of the United States of America99, 7461–7466.

Hong M H, Na S W, Jang Y J, Yoon J J, Lee Y J, Lee H S, Kim H Y, Kang D G. 2021. Betulinic acid improves cardiac-renal dysfunction caused by hypertrophy through calcineurin-NFATc3 signaling. Nutrients13, 3484.

Hook S S, Means A R. 2001. Ca2+/CaM-dependent kinases: From activation to function. Annual Review of Pharmacology and Toxicology41, 471–505.

Horsley V, Pavlath G K. 2002. NFAT: Ubiquitous regulator of cell differentiation and adaptation. The Journal of Cell Biology156, 771–774.

Jiang H N, Zeng B, Chen G L, Lai B, Lu S H, Qu J M. 2016. Lipopolysaccharide potentiates endothelin-1-induced proliferation of pulmonary arterial smooth muscle cells by upregulating TRPC channels. Biomedicine & Pharmacotherapy82, 20–27.

Junli H, Hongyan T, Ya L, Fenling F. 2018. 5-HT promotes pulmonary arterial smooth muscle cell proliferation through the TRPC channel. Cellular and Molecular Biology (Noisy-le-Grand, France), 64, 89–96.

Kambadur R, Sharma M, Smith T P, Bass J J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research7, 910–916.

Kirschmer N, Bandleon S, Von Ehrlich-Treuenstätt V, Hartmann S, Schaaf A, Lamprecht A K, Miranda-Laferte E, Langsenlehner T, Ritter O, Eder P. 2016. TRPC4α and TRPC4β similarly affect neonatal cardiomyocyte survival during chronic GPCR stimulation. PLoS ONE11, e0168446.

Kollias H D, Mcdermott J C. 2008. Transforming growth factor-beta and myostatin signaling in skeletal muscle. Journal of Applied Physiology104, 579–587.

Kreusser M M, Backs J. 2014. Integrated mechanisms of CaMKII-dependent ventricular remodeling. Frontiers in Pharmacology5, 36.

Lee S J. 2021. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. The Journal of Clinical Investigation131, e148372.

Li H, Rao A, Hogan P G. 2011. Interaction of calcineurin with substrates and targeting proteins. Trends in Cell Biology21, 91–103.

Li N, Si B, Ju J F, Zhu M, You F, Wang D, Ren J, Ning Y S, Zhang F Q, Dong K, Huang J, Yu W Q, Wang T J, Qiao B. 2016. Nicotine induces cardiomyocyte hypertrophy through TRPC3-mediated Ca2+/NFAT signalling pathway. The Canadian Journal of Cardiology32, 1260.e1.

Lin C Y, Shibu M A, Wen R, Day C H, Chen R J, Kuo C H, Ho T J, Viswanadha V P, Kuo W W, Huang C Y. 2021. Leu27 IGF-II-induced hypertrophy in H9c2 cardiomyoblasts is ameliorated by saffron by regulation of calcineurin/NFAT and CaMKIIδ signaling. Environmental Toxicology36, 2475–2483.

Liu J, Pan M, Huang D, Guo Y, Yang M, Zhang W, Mai K. 2020. Myostatin-1 inhibits cell proliferation by inhibiting the mTOR signal pathway and MRFs, and activating the ubiquitin-proteasomal system in skeletal muscle cells of japanese flounder Paralichthys olivaceusCells9, 2376.

Luo P, Wang L, Luo L, Wang L, Yang K, Shu G, Wang S, Zhu X, Gao P, Jiang Q. 2019. Ca2+-calcineurin-NFAT pathway mediates the effect of thymol on oxidative metabolism and fiber-type switch in skeletal muscle. Food & Function10, 5166–5173.

Makarewich C A, Zhang H, Davis J, Correll R N, Trappanese D M, Hoffman N E, Troupes C D, Berretta R M, Kubo H, Madesh M, Chen X, Gao E, Molkentin J D, Houser S R. 2014. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circulation Research115, 567–580.

Masaki T, Shimada M. 2022. Decoding the phosphatase code: Regulation of cell proliferation by calcineurin. International Journal of Molecular Sciences23, 1122.

Masson B, Saint-Martin Willer A, Dutheil M, Penalva L, Le Ribeuz H, El Jekmek K, Ruchon Y, Cohen-Kaminsky S, Sabourin J, Humbert M, Mercier O, Montani D, Capuano V, Antigny F. 2023. Contribution of transient receptor potential canonical channels in human and experimental pulmonary arterial hypertension. American Journal of Physiology Lung Cellular and Molecular Physiology325, L246–L261.

Matikainen N, Pekkarinen T, Ryhänen E M, Schalin-Jäntti C. 2021. Physiology of calcium homeostasis: An overview. Endocrinology and Metabolism Clinics of North America50, 575–590.

McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. 2003. Myostatin negatively regulates satellite cell activation and self-renewal. The Journal of Cell Biology162, 1135–1147.

McPherron A C, Lawler A M, Lee S J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature387, 83–90.

McPherron A C, Lee S J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America94, 12457–12461.

Mojsa B, Mora S, Bossowski J P, Lassot I, Desagher S. 2015. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Cell Death and Differentiation22, 274–286.

Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics3, e79.

Mu X, Brown L D, Liu Y, Schneider M F. 2007. Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiological Genomics30, 300–312.

Nakayama H, Wilkin B J, Bodi I, Molkentin J D. 2006. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB Journal20, 1660–1670.

Nelson P L, Beck A, Cheng H. 2011. Transient receptor proteins illuminated: Current views on TRPs and disease. Veterinary Journal (London, England: 1997), 187, 153–164.

Park Y J, Yoo S A, Kim M, Kim W U. 2020. The role of Calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Frontiers in Immunology11, 195.

Pinto M C, Kihara A H, Goulart V A, Tonelli F M, Gomes K N, Ulrich H, Resende R R. 2015. Calcium signaling and cell proliferation. Cellular Signalling27, 2139–2149.

Puri B K. 2020. Calcium signaling and gene expression. Advances in Experimental Medicine and Biology1131, 537–545.

Rao A, Luo C, Hogan P G. 1997. Transcription factors of the NFAT family: Regulation and function. Annual Review of Immunology15, 707–747.

Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. 2021. The role of Ca2+ /calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Proliferation54, e13122.

Rosenberg P, Hawkins A, Stiber J, Shelton J M, Hutcheson K, Bassel-Duby R, Shin D M, Yan Z, Williams R S. 2004. TRPC3 channels confer cellular memory of recent neuromuscular activity. Proceedings of the National Academy of Sciences of the United States of America101, 9387–9392.

Rusnak F, Mertz P. 2000. Calcineurin: Form and function. Physiological Reviews80, 1483–1521.

Schiaffino S, Reggiani C. 2011. Fiber types in mammalian skeletal muscles. Physiological Reviews91, 1447–1531.

Serrano-Pérez M C, Fernández M, Neria F, Berjón-Otero M, Doncel-Pérez E, Cano E, Tranque P. 2015. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells. Glia63, 987–1004.

Snoeck H W. 2020. Calcium regulation of stem cells. EMBO Reports21, e50028.

Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva L R, Selvaraj S, Singh B B. 2021. Calcium signaling regulates autophagy and apoptosis. Cells10, 2125.

Sweeney H L, Hammers D W. 2018. Muscle contraction. Cold Spring Harbor Perspectives in Biology10, a023200.

Tham Y K, Bernardo B C, Ooi J Y, Weeks K L, Mcmullen J R. 2015. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Archives of Toxicology89, 1401–1438.

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. The Journal of Biological Chemistry275, 40235–40243.

Wang B, Guo J, Zhang M, Liu Z, Zhou R, Guo F, Li K, Mu Y. 2021. Insulin-Degrading enzyme regulates the proliferation and apoptosis of porcine skeletal muscle stem cells via Myostatin/MYOD pathway. Frontiers in Cell and Developmental Biology9, 685593.

Wang Z, Wang Y, Tian X, Shen H, Dou Y, Li H, Chen G. 2016. Transient receptor potential channel 1/4 reduces subarachnoid hemorrhage-induced early brain injury in rats via calcineurin-mediated NMDAR and NFAT dephosphorylation. Scientific Reports6, 33577.

Yu Y, Fantozzi I, Remillard C V, Landsberg J W, Kunichika N, Platoshyn O, Tigno D D, Thistlethwaite P A, Rubin L J, Yuan J X. 2004. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America101, 13861–13866.

Zhan C, Shi Y. 2017. TRPC channels and cell proliferation. Advances in Experimental Medicine and Biology976, 149–155.

Zhang B, Chen L, Bai Y G, Song J B, Cheng J H, Ma H Z, Ma J, Xie M J. 2020. miR–137 and its target T-type CaV 3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Proliferation53, e12774.

Zhang G, He M, Wu P, Zhang X, Zhou K, Li T, Zhang T, Xie K, Dai G, Wang J. 2021. MicroRNA-27b-3p targets the myostatin gene to regulate myoblast proliferation and is involved in myoblast differentiation. Cells10, 423.

Zhang J, Zhang L, Nie J, Lin Y, Li Y, Xu W, Zhao J Y, Zhao S M, Wang C. 2021. Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect. Oncogene40, 6692–6702.

Zhang Q, Qi H, Cao Y, Shi P, Song C, Ba L, Chen Y, Gao J, Li S, Li B, Sun H. 2018. Activation of transient receptor potential vanilloid 3 channel (TRPV3) aggravated pathological cardiac hypertrophy via calcineurin/NFATc3 pathway in rats. Journal of Cellular and Molecular Medicine22, 6055–6067.

Zhao L, Sullivan M N, Chase M, Gonzales A L, Earley S. 2014. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. American Journal of Respiratory Cell and Molecular Biology50, 1064–1075.

Zhao Y, Yang L, Su G, Wei Z, Liu X, Song L, Hai C, Wu D, Hao Z, Wu Y, Zhang L, Bai C, Li G. 2022. Growth traits and sperm proteomics analyses of myostatin gene-edited Chinese Yellow Cattle. Life (Basel, Switzerland), 12, 627.

[1] LIU Hui, LIU Chang, ZHAO Yu-hang, HAN Xue-jie, ZHOU Zheng-wei, WANG Chen, LI Rong-feng, LI Xue-ling . Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. >Journal of Integrative Agriculture, 2018, 17(2): 406-414.
[2] LIU Dong-hua, HAN Hao-yuan, ZHANG Xin, SUN Ting, LAN Xian-yong, CHEN Hong, LEI Chu-zhao, DANG Rui-hua . The genetic diversity analysis in the donkey myostatin gene[J]. >Journal of Integrative Agriculture, 2017, 16(03): 656-663.
[3] QIAN Li-li, MA De-zun, GAO Peng-fei, JIANG Sheng-wang, WANG Qing-qing, CAI Chun-bo, XIAO Gao-jun, AN Xiao-rong, CUI Wen-tao. Muscle hypertrophy in transgenic mice due to over-expression of porcine myostatin mutated at its cleavage site[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2571-2577.
No Suggested Reading articles found!