Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2633-2648    DOI: 10.1016/j.jia.2024.03.068
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening
Jialing Fu1, 2*, Qingjiang Wu1, 3*, Xia Wang1, 2, Juan Sun1, Li Liao1, Li Li4, 5, Qiang Xu1, 2#
1 National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
2 Hubei Hongshan Laboratory, Wuhan 430070, China
3 Institute of Horticultural Sciences, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
4 Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, New York 14853, USA
5 Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, New York 14853, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
【目的】柚子(Citrus maxima)丰富多样的果肉色泽由对人体健康有益的类胡萝卜素的组成和含量所决定。因此,研究类胡萝卜素生物合成的调控网络对提高柚果实中类胡萝卜素的含量具有重要意义。然而,目前柚果实中类胡萝卜素合成代谢的调控分子机制尚不完全清楚。【方法】在本研究中,通过分析典型的红肉柚和白肉柚以及杂交分离群体F1代的果肉颜色极端单株的果肉转录组数据,我们鉴定到一个新的组蛋白甲基转移酶基因CgSDG40。【结果】CgSDG40的表达与果肉颜色高度相关,且与类胡萝卜素合成关键限速酶基因CgPSY1的表达呈现出共表达趋势。有趣的是,CgSDG40CgPSY1在染色体上的位置是以“头对头”的形式紧挨着的,且共享一段有重叠的启动子区域。亚细胞定位实验表明CgSDG40定位于细胞核。在柑橘愈伤中超量表达CgSDG40可以显著提高愈伤中类胡萝卜素的含量,同时愈伤中CgPSY1的表达也显著提高。【结论与意义】综上所述,我们的研究揭示了一个新的组蛋白甲基转移酶基因CgSDG40参与了类胡萝卜素的生物合成调控,这为分子设计育种和果实色泽与营养品质的遗传育种改良提供了新的理论基础。


Abstract  
The flesh color of pummelo (Citrus maxima) fruits is highly diverse and largely depends on the level of carotenoids, which are beneficial to human health.  It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.  However, the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.  In this study, we identified a novel histone methyltransferase gene, CgSDG40, involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo, red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.  Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.  Interestingly, CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions, sharing a partially overlapping promoter region.  Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.  Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.  In addition, expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.  Taken together, our findings reveal a novel histone methyltransferase regulator, CgSDG40, involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.
Keywords:  pummelo        SET domain protein        epigenetic regulation        PSY1        lycopene        fruit quality        fruit color  
Received: 07 July 2023   Accepted: 27 November 2023
Fund: 
This work was supported by the Major Special Projects and Key R&D Projects in Yunnan Province, China (202102AE090054), the National Natural Science Foundation of China (31925034), the Foundation of Hubei Hongshan Laboratory granted to Dr. Qiang Xu, China (2021hszd016), and the Key Project of Hubei Provincial Natural Science Foundation, China (2021CFA017).
About author:  Jialing Fu, E-mail: fujialing96@163.com; Qingjiang Wu, E-mail: wqj9319@126.com; #Correspondence Qiang Xu, Tel: +86-27-87286623, E-mail: xuqiang@mail.hzau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu. 2024. A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening. Journal of Integrative Agriculture, 23(8): 2633-2648.

Alquezar B, Rodrigo M J, Zacarias L. 2008. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry69, 1997–2007.

Anwar S, Brenya E, Alagoz Y, Cazzonelli C I. 2021. Epigenetic control of carotenogenesis during plant development. Critical Reviews in Plant Sciences40, 23–48.

Bartley G E, Scolnik P A. 1995. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell7, 1027–1038.

Butelli E, Licciardello C, Zhang Y, Liu J J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell24, 1242–1255.

Cao H B, Zhang J C, Xu J D, Ye J L, Yun Z, Xu Q, Xu J, Deng X X. 2012. Comprehending crystalline beta-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. Journal of Experimental Botany63, 4403–4417.

Cazzonelli C I, Cuttriss A J, Cossetto S B, Pye W, Crisp P, Whelan J, Finnegan E J, Turnbull C, Pogson B J. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell21, 39–53.

Cazzonelli C I, Pogson B J. 2010. Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science15, 266–274.

Cazzonelli C I, Roberts A C, Carmody M E, Pogson B J. 2010. Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Molecular Plant3, 174–191.

Chayut N, Yuan H, Ohali S, Meir A, Saar U, Tzuri G, Zheng Y, Mazourek M, Gepstein S, Zhou X J, Portnoy V, Lewinsohn E, Schaffer A A, Katzir N, Fei Z J, Welsch R, Li L, Burger J, Tadmor Y. 2017. Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. Plant Physiology173, 376–389.

Chen X D, Cai W J, Xia J, Yuan H Z, Wang Q L, Pang F H, Zhao M Z. 2023. Metabolomic and transcriptomic analysis reveals the molecular mechanism by which blue light promotes lutein synthesis in strawberry. Journal of Integrative Agriculture22, 1695–1703.

Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. 2003. An efficient protocol for genomic DNA extraction from Citrus species. Plant Molecular Biology Reporter21, 177–178.

Duan X, Jiang C, Zhao Y P, Gao G, Li M, Qi H Y. 2022. Transcriptome and metabolomics analysis revealed that CmWRKY49 regulating CmPSY1 promotes β-carotene accumulation in orange fleshed oriental melon. Horticultural Plant Journal8, 650–666.

Eggersdorfer M, Wyss A. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics652, 18–26.

Fanciullino A L, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitraul P. 2006. Carotenoid diversity in cultivated Citrus is highly influenced by genetic factors. Journal of Agricultural and Food Chemistry54, 4397–4406.

Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C F, Christou P. 2010. Travel advice on the road to carotenoids in plants. Plant Science179, 28–48.

Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients6, 466–488.

Fraser P D, Bramley P M. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research43, 228–265.

Fraser P D, Enfissi E M A, Halket J M, Truesdale M R, Yu D M, Gerrish C, Bramley P M. 2007. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell19, 3194–3211.

Fraser P D, Truesdale M R, Bird C R, Schuch W, Bramley P M. 1994. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiology105, 405–413.

Fujisawa M, Nakano T, Shima Y, Ito Y. 2013. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell25, 371–386.

Gong J, Zeng Y L, Meng Q N, Guan Y J, Li C Y, Yang H B, Zhang Y Z, Ampomah-Dwamena C, Liu P, Chen C W, Deng X X, Cheng Y J, Wang P W. 2021. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of Experimental Botany72, 6274–6290.

Guo F, Yu H W, Xu Q, Deng X X. 2015. Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis). BMC Plant Biology15, 44.

Guo J E, Hu Z L, Yu X H, Li A Z, Li F F, Wang Y S, Tian S B, Chen G P. 2018. A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports37, 125–135.

Hermanns A S, Zhou X S, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal6, 343–360.

Holt N E, Zigmantas D, Valkunas L, Li X P, Niyogi K K, Fleming G R. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science307, 433–436

Huang D, Wang X, Tang Z Z, Yuan Y, Xu Y T, He J X, Jiang X L, Peng S A, Li L, Butelli E, Deng X X, Xu Q. 2018. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. Nature Plants4, 930–941.

Huang Y, He J X, Xu Y T, Zheng W K, Wang S H, Chen P, Zeng B, Yang S Z, Jiang X L, Liu Z S, Wang L, Wang X, Liu S J, Lu Z H, Liu Z A, Yu H W, Yue J Q, Gao J Y, Zhou X Y, Long C R, et al. 2023. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nature Genetics55, 1964–1975.

Ikoma Y, Matsumoto H, Kato M. 2014. The characteristics of carotenoid biosynthesis in citrus fruit. Japan Agricultural Research Quarterly48, 9–16.

Jenuweina T, Laiblea G, Dorn R, Reuter G. 1998. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences54, 80–93.

Kato M. 2012. Mechanism of carotenoid accumulation in citrus fruit. Journal of the Japanese Society for Horticultural Science81, 219–233.

Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology134, 824–837.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution35, 1547–1549.

Li Q Q, Wang T, Xu C, Li M S, Tian J, Wang Y, Zhang X Z, Xu X F, Han Z H, Wu T. 2022. MdMADS6 recruits histone deacetylase MdHDA19 to repress the expression of the carotenoid synthesis-related gene MdCCD1 during fruit ripening. Plants11, 668.

Liu C Y, Lu F L, Cui X, Cao X F. 2010. Histone methylation in higher plants. Annual Review of Plant Biology61, 395–420.

Liu G Z, Li C X, Yu H Y, Tao P W, Yuan L, Ye J, Chen W F, Wang Y, Ge P F, Zhang J H, Zhou G L, Zheng W, Ye Z B, Zhang Y Y. 2020. GREEN STRIPE, encoding methylated TOMATO AGAMOUS LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytologist228, 302–317.

Liu L H, Shao Z Y, Zhang M, Wang Q M. 2015. Regulation of carotenoid metabolism in tomato. Molecular Plant8, 28–39.

Liu Q, Xu J, Liu Y Z, Zhao X L, Deng X X, Guo L L, Gu J Q. 2007. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). Journal of Experimental Botany58, 4161–4171.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Lu P, Wang S S, Grierson D, Xu C J. 2019. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. Planta249, 257–270.

Lu S W, Ye J L, Zhu K J, Zhang Y, Zhang M W, Xu Q, Deng X X. 2021. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. Journal of Experimental Botany72, 3028–3043.

Lu S W, Zhang Y, Zhu K J, Yang W, Ye J L, Chai L J, Xu Q, Deng X X. 2018. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology176, 2657–2676.

Lu Z H, Huang Y, Mao S Y, Wu F F, Liu Y, Mao X Q, Adhikari P B, Xu Y T, Wang L, Zuo H, Rao M J, Xu Q. 2022. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. Horticulture Research9, uhac175.

Luan S, Eck J V, Zhou X J, Lopez A B, O’halloran D M, Cosman K M, Conlin B J, Paolillo D J, Garvin D F, Vrebalov J, Kochian L V, Kupper H, Earle E D, Cao J, Li L. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell18, 3594–3605.

Luan Y T, Fu X M, Lu P J, Grierson D, Xu C J. 2020. Molecular mechanisms determining the differential accumulation of carotenoids in plant species and varieties. Critical Reviews in Plant Sciences39, 125–139.

Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T. 2007. Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. Journal of Agricultural and Food Chemistry55, 2356–2368.

Moise A R, Al-Babili S, Wurtzel E T. 2014. Mechanistic aspects of carotenoid biosynthesis. Chemical Reviews114, 164–193.

Moran N A, Jarvik T. 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science328, 624–627.

Nisar N, Li L, Lu S, Khin N C, Pogson B J. 2015. Carotenoid metabolism in plants. Molecular Plant8, 68–82.

Park H, Kreunen S S, Cuttriss A J, Dellapenna D, Pogson B J. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell14, 321–332.

Stanley L, Yuan Y W. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: So many regulators, so little consensus. Frontiers in Plant Science10, 1017.

Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. 2019. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research47, W270–W275.

Sun T H, Yuan H, Cao H B, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants: The role of plastids. Molecular Plant11, 58–74.

Thorstensen T, Grini P E, Aalen R B. 2011. SET domain proteins in plant development. Biochimica et Biophysica Acta1809, 407–420.

Toledo-Ortiza G, Huq E, Rodríguez-Concepcióna M. 2010. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America107, 11626–11631.

Umeno D, Tobias A V, Arnold F H. 2005. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews69, 51–78.

Valmalette J C, Dombrovsky A, Brat P, Mertz C, Capovilla M, Robichon A. 2012. Light-induced electron transfer and ATP synthesis in a carotene synthesizing insect. Scientific Reports2, 579.

Vranova E, Coman D, Gruissem W. 2012. Structure and dynamics of the isoprenoid pathway network. Molecular Plant5, 318–333.

Walter M H, Strack D. 2011. Carotenoids and their cleavage products: Biosynthesis and functions. Nature Product Reports28, 663–692.

Wang X, Xu Y T, Zhang S Q, Cao L, Huang Y, Cheng J F, Wu G Z, Tian S L, Chen C L, Liu Y, Yu H W, Yang X M, Lan H, Wang N, Wang L, Xu J D, Jiang X L, Xie Z Z, Tan M L, Larkin R M, et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics49, 765–772.

Wu F H, Shen S C, Lee L Y, Lee S H, Chan M T, Lin C S. 2009. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods5, 16.

Xiao K, Chen J, He Q X M, Wang Y, Shen H L, Sun L. 2020. DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. Journal of Experimental Botany71, 1928–1942.

Xiong C, Luo D, Lin A H, Zhang C L, Shan L B, He P, Li B, Zhang Q M, Hua B, Yuan Z L, Li H X, Zhang J H, Yang C X, Lu Y G, Ye Z B, Wang T T. 2019. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist221, 279–294.

Xu C J, Fraser P D, Wang W J, Bramley P M. 2006. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. Journal of Agricultural and Food Chemistry54, 5474–5481.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols2, 1565–1572.

Yu H, Cui N, Guo K, Xu W, Wang H F. 2023. Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Horticultural Plant Journal9, 577–588.

Yu H W, Yang X M, Guo F, Jiang X L, Deng X X, Xu Q. 2017. Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China. Tree Genetics & Genomes13, 58.

Zhang J C, Zhou W J, Xu Q, Tao N G, Ye J L, Guo F, Xu J, Deng X X. 2013. Two lycopene β-cyclases genes from sweet orange (Citrus sinensis L. Osbeck) encode enzymes with different functional efficiency during the conversion of lycopene-to-provitamin A. Journal of Integrative Agriculture12, 1731–1747.

Zhang L S, Ma H. 2012. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. New Phytologist195, 248–263.

Zhang M, Tan F Q, Fan Y J, Wang T T, Song X, Xie K D, Wu X M, Zhang F, Deng X X, Grosser J W, Guo W W. 2022. Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus. Plant Physiology190, 2519–2538.

Zhang R X, Zhang N N, Wang Y X, Abid K, Ma S, Bai X, Zeng Q, Pan Q M, Li B H, Zhang L G. 2023. Blue light induces leaf color change by modulating carotenoid metabolites in orange-head Chinese cabbage (Brassica rapa L. ssp. pekinensis). Journal of Integrative Agriculture22, 3296–3311.

Zhao Z, Yu Y, Meyer D, Wu C J, Shen W H. 2005. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biology7, 1256–1260.

Zheng X J, Giuliano G, Al-Babili S. 2020. Carotenoid biofortification in crop plants: Citius, altius, fortius. BBA Molecular and Cell Biology of Lipids1865, 158664.

Zheng X J, Zhu K J, Sun Q, Zhang W Y, Wang X, Cao H B, Tan M L, Xie Z Z, Zeng Y L, Ye J L, Chai L J, Qiang Xu, Pan Z Y, Xiao S Y, Fraser P D, Deng X X. 2019. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Molecular Plant12, 1294–1307.

Zhu F, Luo T, Liu C Y, Wang Y, Yang H B, Yang W, Zheng L, Xiao X, Zhang M F, Xu R W, Xu J L, Zeng Y L, Xu J, Xu Q, Guo W W, Larkin R M, Deng X X, Cheng Y J. 2017. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulateNew Phytologist216, 178–192.

Zhu K J, Sun Q, Chen H Y, Mei X H, Lu S W, Ye J L, Chai L J, Xu Q, Deng X X. 2021a. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Journal of Experimental Botany72, 3137–3154.

Zhu K J, Zheng X J, Ye J L, Huang Y, Chen H Y, Mei X H, Xie Z Z, Cao L X, Zeng Y L, Larkin R M, Xu Q, Perez-Roman E, Talon M, Zumajo-Cardona C, Wurtzel E T, Deng X X. 2021b. Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in CitrusPlant Physiology187, 829–845.

Zinani O Q H, Keseroglu K, Ozbudak E M. 2021. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends in Genetics38, 73–81.

[1] XUAN Zhi-you, ZHANG Song, LI Ping, YANG Fang-yun, CHEN Hong-ming, LIU Ke-hong, ZHOU Yan, LI Zhong-an, ZHOU Chang-yong, CAO Meng-ji. Apple stem grooving virus is associated with leaf yellow mottle mosaic disease on Citrus grandis cv. Huangjinmiyou in China[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2031-2041.
No Suggested Reading articles found!